dlcp:dlcp2024:letters:main
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
dlcp:dlcp2024:letters:main [04/03/2025 20:29] – ↷ Page moved from dlcp2024:letters:main to dlcp:dlcp2024:letters:main admin | dlcp:dlcp2024:letters:main [Unknown date] (current) – removed - external edit (Unknown date) 127.0.0.1 | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Справки о публикации статей ====== | ||
- | - {{ : | ||
- | in high energy physics»}} | ||
- | - {{ : | ||
- | Longevity with Deep Learning»}} | ||
- | - {{ : | ||
- | TAIGA-IACT Experiment with Conditional Generative Adversarial Networks»}} | ||
- | - {{ : | ||
- | differential cross sections and structure functions of single pion electroproduction in the | ||
- | resonance region»}} | ||
- | - {{ : | ||
- | experiment with neural network methods»}} | ||
- | - {{ : | ||
- | complexes in spiking neural networks»}} | ||
- | - {{ : | ||
- | Integrals Computation in Relativistic Quantum Mechanics»}} | ||
- | - {{ : | ||
- | Bond Ising Models Using LDPC Graph Representations and Nishimori Temperature»}} | ||
- | - {{ : | ||
- | Described by Generalized Nonlinear Schrödinger Equations»}} | ||
- | - {{ : | ||
- | for extensive air shower separation in the SPHERE-3 experiment»}} | ||
- | - {{ : | ||
- | - {{ : | ||
- | - {{ : | ||
- | detector systems using the example of muon shield in the SHiP experiment»}} | ||
- | - {{ : | ||
- | radial basis function networks»}} | ||
- | - {{ : | ||
- | Active Galactic Nuclei»}} | ||
- | - {{ : | ||
- | directions of UHECRs registered by fluorescence telescopes with neural networks»}} | ||
- | - {{ : | ||
- | HiSCORE Data Using Fully Connectedv Neural Networks»}} | ||
- | - {{ : | ||
- | Modulated Metal Oxide Semiconductor Gas Sensors through Machine Learning Based Response Models»}} | ||
- | - {{ : | ||
- | learning applications in Earth sciences in 2024: achievements and perspectives»}} | ||
- | - {{ : | ||
- | atmospheric modeling: methods and approaches»}} | ||
- | - {{ : | ||
- | reconstruction of multichannel imaging detector events: ELVES and TRACKS»}} | ||
- | - {{ : | ||
- | prediction of PM2.5 in urban agglomerations with complex terrain, using Grenoble as an example»}} | ||
- | - {{ : | ||
- | variability of the urban heat island in Moscow using machine learning»}} | ||
- | - {{ : | ||
- | magnetosphere using a special algorithm for working with multidimensional time series»}} | ||
- | - {{ : | ||
- | latitude power systems using machine learning methods»}} | ||
- | - {{ : | ||
- | for Tailored Material Properties using Large Language Models»}} | ||
- | - {{ : | ||
- | - {{ : | ||
- | photoluminescent carbon nanosensor for metal ions in water using artificial neural networks»}} | ||
- | - {{ : | ||
- | Forecast the Kp Geomagnetic Index by Machine Learning»}} | ||
- | - {{ : | ||
- | MoS_2 by given properties»}} | ||
- | - {{ : | ||
- | models of soft sensors in oil refining»}} | ||
- | - {{ : | ||
- | premotor potentials in electroencephalogram signal for neurorehabilitation using a closed-loop brain-computer interface»}} | ||
- | - {{ : | ||
- | multicollinear features for reducing the input dimensionality of optical spectroscopy inverse problem»}} | ||
- | - {{ : | ||
- | at NICA SPD»}} | ||
- | - {{ : | ||
- | Networks via Quasiclassical Loss Functionals»}} | ||
- | - {{ : | ||
- | Underground Gas Storages»}} | ||
- | - {{ : | ||
- | density distribution in core of research nuclear reactor»}} | ||
- | - {{ : | ||
- | reinforcement learning with temporal coding and reward-modulated plasticity»}} |
dlcp/dlcp2024/letters/main.1741120145.txt.gz · Last modified: by admin