====== Справки о публикации статей ====== - {{ dlcp:dlcp2024:letters:справки_1.pdf | E.E. Abasov et al. «Application of Kolmogorov-Arnold Networks in high energy physics»}} - {{ dlcp:dlcp2024:letters:справки_2.pdf | S. Ali et al. «Calibrating for the Future: Enhancing Calorimeter Longevity with Deep Learning»}} - {{ dlcp:dlcp2024:letters:справки_3.pdf | Yu.Yu. Dubenskaya et al. «Image Data Augmentation for the TAIGA-IACT Experiment with Conditional Generative Adversarial Networks»}} - {{ dlcp:dlcp2024:letters:справки_4.pdf | A.V. Golda et al. «Machine learning approach in the prediction of differential cross sections and structure functions of single pion electroproduction in the resonance region»}} - {{ dlcp:dlcp2024:letters:справки_5.pdf | E.O. Gres et al. «Gamma/hadron separation in the TAIGA experiment with neural network methods»}} - {{ dlcp:dlcp2024:letters:справки_6.pdf | V.A. Ilyin et al. «Encoding of input signals in terms of path complexes in spiking neural networks»}} - {{ dlcp:dlcp2024:letters:справки_7.pdf | D.V. Salnikov et al. «Application of Neural Networks for Path Integrals Computation in Relativistic Quantum Mechanics»}} - {{ dlcp:dlcp2024:letters:справки_8.pdf | V.S. Usatyuk et al. «Enhanced Image Clustering with Random- Bond Ising Models Using LDPC Graph Representations and Nishimori Temperature»}} - {{ dlcp:dlcp2024:letters:справки_9.pdf | S.V. Zavertyaev et al. «Network Modeling of Optical Solitons Described by Generalized Nonlinear Schrödinger Equations»}} - {{ dlcp:dlcp2024:letters:справки_10.pdf | E.L. Entina et al. «Application of convolutional neural networks for extensive air shower separation in the SPHERE-3 experiment»}} - {{ dlcp:dlcp2024:letters:справки_11.pdf | R.R. Fitagdinov et al. «Generation of grid surface detector data in the Telescope Array experiment using neural networks»}} - {{ dlcp:dlcp2024:letters:справки_12.pdf | A.P. Kryukov et al. «Machine Learning in Gamma Astronomy»}} - {{ dlcp:dlcp2024:letters:справки_13.pdf | E.O. Kurbatov et al. «Multidimensional global optimization of detector systems using the example of muon shield in the SHiP experiment»}} - {{ dlcp:dlcp2024:letters:справки_14.pdf | D.A. Stenkin et al. «Solving problems of mathematical physics on radial basis function networks»}} - {{ dlcp:dlcp2024:letters:справки_15.pdf | D. S. Zagorulia et al. «Morphological Classification of Jets in Active Galactic Nuclei»}} - {{ dlcp:dlcp2024:letters:справки_16.pdf | Mikhail Zotov et al. «Reconstruction of energy and arrival directions of UHECRs registered by fluorescence telescopes with neural networks»}} - {{ dlcp:dlcp2024:letters:справки_17.pdf | A.P. Kryukov et al. «Evaluating EAS Directions from TAIGA HiSCORE Data Using Fully Connectedv Neural Networks»}} - {{ dlcp:dlcp2024:letters:справки_18.pdf | I.V. Isaev et al. «Identification of Air Pollutants with Thermally Modulated Metal Oxide Semiconductor Gas Sensors through Machine Learning Based Response Models»}} - {{ dlcp:dlcp2024:letters:справки_19.pdf | M.A. Krinitsky et al. «An overview of machine learning and deep learning applications in Earth sciences in 2024: achievements and perspectives»}} - {{ dlcp:dlcp2024:letters:справки_20.pdf | V.Yu. Rezvov et al. «Pointwise and complex quality metrics in atmospheric modeling: methods and approaches»}} - {{ dlcp:dlcp2024:letters:справки_21.pdf | S.A. Sharakin et al. «Probabilistic programming methods for reconstruction of multichannel imaging detector events: ELVES and TRACKS»}} - {{ dlcp:dlcp2024:letters:справки_22.pdf | A.I. Suslov et al. «Machine learning methods for statistical prediction of PM2.5 in urban agglomerations with complex terrain, using Grenoble as an example»}} - {{ dlcp:dlcp2024:letters:справки_23.pdf | M.I. Varentsov et al. «Approximation of spatial and temporal variability of the urban heat island in Moscow using machine learning»}} - {{ dlcp:dlcp2024:letters:справки_24.pdf | R.D. Vladimirov et al. «Forecasting the state of the Earth's magnetosphere using a special algorithm for working with multidimensional time series»}} - {{ dlcp:dlcp2024:letters:справки_25.pdf | A.V. Vorobev et al. «Diagnostics of geoinduced currents in high latitude power systems using machine learning methods»}} - {{ dlcp:dlcp2024:letters:справки_26.pdf | Abdalaziz Al-Maeeni et al. «Engineering Point Defects in MoS2 for Tailored Material Properties using Large Language Models»}} - {{ dlcp:dlcp2024:letters:справки_27.pdf | A.N. Balandina et al. «“transformer” architecture for risk analysis of group effects of food nutrients»}} - {{ dlcp:dlcp2024:letters:справки_28.pdf | G.N. Chugreeva et al. «Development of a multimodal photoluminescent carbon nanosensor for metal ions in water using artificial neural networks»}} - {{ dlcp:dlcp2024:letters:справки_29.pdf | I.M. Gadzhiev, et al. «Comparative Analysis of the Procedures to Forecast the Kp Geomagnetic Index by Machine Learning»}} - {{ dlcp:dlcp2024:letters:справки_30.pdf | H.E. Karlinski et al. «Prediction of defect structure in MoS_2 by given properties»}} - {{ dlcp:dlcp2024:letters:справки_31.pdf | I.S. Lazukhin et al. «Feature selection methods for deep learning models of soft sensors in oil refining»}} - {{ dlcp:dlcp2024:letters:справки_32.pdf | A.I. Saevskiy et al. «An original algorithm for classifying premotor potentials in electroencephalogram signal for neurorehabilitation using a closed-loop brain-computer interface»}} - {{ dlcp:dlcp2024:letters:справки_33.pdf | N.O. Shchurov, et al. «Nonlinear relevance estimation of multicollinear features for reducing the input dimensionality of optical spectroscopy inverse problem»}} - {{ dlcp:dlcp2024:letters:справки_34.pdf | F. Shipilov et al. «Machine Learning for FARICH Reconstruction at NICA SPD»}} - {{ dlcp:dlcp2024:letters:справки_35.pdf | S.G. Shorokhov et al. «Improving Physics-Informed Neural Networks via Quasiclassical Loss Functionals»}} - {{ dlcp:dlcp2024:letters:справки_36.pdf | D. Sirota et al. «Neural Operators for Hydrodynamic Modeling of Underground Gas Storages»}} - {{ dlcp:dlcp2024:letters:справки_37.pdf | N.V. Smolnikov et al. «Gaussian process based prediction of density distribution in core of research nuclear reactor»}} - {{ dlcp:dlcp2024:letters:справки_38.pdf |D.S.Vlasov et al. «Spiking neural network actor-critic reinforcement learning with temporal coding and reward-modulated plasticity»}}