Влажность воздуха в приповерхностном слое атмосферы над океаном является ключевым климатическим параметром, влияющим на процессы переноса влаги и тепла между океаном и атмосферой, а также на динамику атмосферных процессов в целом. Анализ метеорологических данных, собранных в течение XX века, показывает разреженность рядов измерений влажности в пространстве и времени. Международный массив данных о характеристиках океана и атмосферы (ICOADS) указывает на недостаточную плотность измерений в начале XX века по сравнению с более поздними периодами, что создает сложности для адекватного анализа климатических тенденций относительной влажности. Представленные в литературе методы восстановления временных рядов влажности зачастую демонстрируют ограниченную точность, основываясь преимущественно на статистических и эвристических подходах. Наша работа направлена на повышение качества решения этой задачи за счёт применения методов машинного обучения. В настоящей работе решена задача в формулировке аппроксимации моментальных значений относительной влажности по данным сопутствующих измерений атмосферного давления, температуры воздуха, скорости и направления ветра, температуры поверхности океана, а также наблюдений количества и типов облачности на трёх ярусах. Кроме этого, в составе сопутствующих переменных используется код погоды по стандарту ВМО и расчетная высота солнца. В исследовании использованы модели машинного обучения следующих типов: линейная регрессия, случайный лес, градиентный бустинг (CatBoost) и полносвязная искусственная нейронная сеть. Для повышения территориальной и временной специфичности разрабатываемых моделей мы провели исследование для каждой ячейки размером 5 градусов по широте и долготе и каждого сезона по отдельности. На основе полученных результатов были построены карты пространственного распределения ошибок моделей, которые позволили выявить регионы с высокой и низкой точностью аппроксимации влажности. Исследование подтвердило эффективность методов машинного обучения для восстановления климатических рядов, определило наиболее подходящие модели для этой задачи и обозначило перспективные направления для дальнейшей работы.