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ABSTRACT

The topology and dynamics of the solar chromosphere are greatly affected by the presence of magnetic fields. The magnetic field
can be inferred by analyzing polarimetric observations of spectral lines. Polarimetric signals induced by chromospheric magnetic
fields are, however, particularly weak, and in most cases very close to the detection limit of current instrumentation. Because of this,
there are only few observational studies that have successfully reconstructed the three components of the magnetic field vector in
the chromosphere. Traditionally, the signal-to-noise ratio of observations has been improved by performing time-averages or spatial
averages, but in both cases, some information is lost. More advanced techniques, like principal-component-analysis, have also been
employed to take advantage of the sparsity of the observations in the spectral direction. In the present study, we propose to use the
spatial coherence of the observations to reduce the noise using deep-learning techniques. We design a neural network that is capable
of recovering weak signals under a complex noise corruption (including instrumental artifacts and non-linear post-processing). The
training of the network is carried out without a priori knowledge of the clean signals, or an explicit statistical characterization of the
noise or other corruption. We only use the same observations as our generative model. The performance of this method is demonstrated
on both, synthetic experiments and real data. We show examples of the improvement in typical signals obtained in current telescopes
such as the Swedish 1-meter Solar Telescope. The presented method can recover weak signals equally well no matter on what spectral
line or spectral sampling is used. It is especially suitable for cases when the wavelength sampling is scarce.
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1. Introduction

The magnetic field plays a key role in the generation and evo-
lution of many of the phenomena that take place in the Sun,
from events with sizes that are invisible to our largest telescopes
to spectacular large high energy eruptions (Wiegelmann et al.
2014), and its study is thus mandatory. The information about the
magnetic fields is encoded in the polarization of the radiation of
the Sun and the stars through the Zeeman and Hanle effects (e.g.,
Degl’innocenti & Landolfi 2004; Trujillo Bueno 2010). Stokes
polarimetry is, therefore, the observation tool that gives us ac-
cess to this information and allows us to determine the topology
and evolution of the magnetic field. At photospheric levels out-
side active regions, as well as in most of the chromosphere and
corona, magnetic fields are weaker and, therefore the polariza-
tion signals are often close to the noise level (e.g., de la Cruz
Rodríguez & van Noort 2017). This has led to very challenging
requirements in the instrumentation of current telescopes as well
as the new era of large telescopes, such as the 4-m Daniel K. In-
ouye Solar Telescope (DKIST; Tritschler et al. 2016) or the 4-m
European Solar Telescope (EST; Collados et al. 2013).

For a correct analysis of polarization signals, it is necessary
to identify and remove instrumental artifacts from the detected
signals. One of the most recurrent effects in spectropolarimetric
data is the appearance of interference patterns commonly known
as fringes (Lites 1991; Semel 2003; Harrington et al. 2017).
Several studies have successfully identified and removed them
from the observed signals using Fourier filtering, wavelet anal-
ysis (Rojo & Harrington 2006) and different implementations
of Principal Component Analysis (PCA; Loève 1963; Casini &
Li 2018). However, there are other issues that are not as simple

to mitigate, such as the intrinsic noise associated with measure-
ments. The characteristics of this noise depend on multiple fac-
tors: the source we are studying, the sensitivity of the detectors,
and the modification of the signal during the exposure, storage,
transmission, processing, and conversion. The most natural way
to increase the signal to noise ratio (S/N) is to increase the expo-
sure time or perform a time average. However, this procedure can
be critical for events that change very rapidly in time (e.g. in the
solar chromosphere) and therefore important information is lost
by performing this operation. Another approach can be simply to
perform a spatial average of some pixels, something that also re-
moves spatial information of the distribution of the signals. The
most widely used procedure in recent years to improve signals
without losing information has been the application of PCA as
a denoising technique (Carroll et al. 2007; Martínez González
et al. 2008). With this technique, we assume that there is a small
space of vectors that can explain most of the spectral profiles of
our field of view (FOV) and that all of them can be decomposed
as a linear combination of the elements of this basis. With PCA
we are able to find the new representation (a basis of vectors) that
best reproduces the observations and that the large variance is ex-
plained by the first vectors of the basis. Assuming that the noise
is uncorrelated, denoising is possible by reconstructing the data
with a truncated basis. This technique is based on the spectral
information present and the correlation between the measured
wavelength points. Therefore, if wavelength sampling is scarce,
the efficiency of PCA reconstruction decreases.

In this study we explore, through the use of a neural network,
the idea of using the presence of spatial correlation, properties
such as smoothness and structures in the image, to predict the
value of a pixel from the value of other pixels. The idea can be
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exploited by with convolutional neural networks (CNN; LeCun
& Bengio 1998). They are composed of several convolutional
neurons, where each CNN-neuron carries out the convolution
of the input with a certain kernel. The output is known as fea-
ture map and contains the information on how each pixel relates
to its neighbors. CNNs have been successfully used in many
application in the solar physics field: to infer horizontal veloc-
ity fields from consecutive continuum images (Asensio Ramos
et al. 2017b), for solar flare prediction (Nishizuka et al. 2018;
Huang et al. 2018), to efficiently deconvolve solar images (Díaz
Baso & Asensio Ramos 2018; Asensio Ramos et al. 2018), for
coronal holes segmentation (Illarionov & Tlatov 2018), for spec-
tropolarimetric inversions (Asensio Ramos & Díaz Baso 2019;
Osborne et al. 2019) and many others that are being developed
(Bobra et al. 2019).

Among different convolutional neural network approaches
for denoising, probably the best example are the autoencoder
networks. This type tries to reconstruct the image from its cor-
rupted version by transforming it into another representation,
usually a low-dimensional space, also called latent space. There,
statistical regularities are more easily captured, after which the
corrected image is re-projected back in the input space (Vincent
et al. 2008; Jain & Seung 2008). Based on the same idea of re-
ducing data dimensionality as PCA, neural networks are much
more flexible as this transformation is highly non-linear. Similar
approaches (and also other architectures) have made it possible
to develop neural networks that can denoise an image with an
unknown noise level, or even a spatially variant noise (Zhang
et al. 2017, 2018; Ehret et al. 2018). To recover the underlying
image, these neural networks are trained with artificial noise and
therefore prior information about the noise, like the type, ex-
pected level or the spatial distribution, is required. In fact, the
assumption of white Gaussian or Poisson noise (justified by the
photon count process at the image sensor) is not valid anymore
because we usually do not have access to raw data, but processed
data where the noise is spatially correlated and signal depen-
dent due to the application of image reconstruction techniques
(e.g., MOMFBD, Löfdahl 2002; van Noort et al. 2005). More-
over, these characteristics depend on both the instrument and the
processing pipeline. Therefore, the characterization of noise is
not always trivial in solar applications.

In contrast, the information from a single image and the abil-
ity of neural networks to generate natural images have shown to
be sufficient for a high-quality correction (Ulyanov et al. 2017).
In these studies, a randomly initialized convolutional network
resists generating noisy images and therefore succeeds in cor-
recting the image (among other tasks such as superresolution)
from a single image. The problem with this technique is that al-
though clean data is not needed a priori, it is a very slow and
computationally expensive technique because it needs to gener-
ate a network for each image.

Although all the previous techniques have been very useful
to show the capabilities of the neural networks as a denoiser,
they present some disadvantages. Our analysis is inspired by
Noise2Noise (Lehtinen et al. 2018) approach which is more suit-
able for the problem for two reasons. First, the method uses cer-
tain properties of neural networks to clean corrupted data, with-
out need to have the pair noisy-clean image, i.e. without the need
to generate data with synthetic noise. Second, there is also no
need for an explicit statistical probability model of the noise cor-
ruption or a clean image, because the network learns it indirectly
from the data. In fact, the authors show how to transform cor-
rupted into clean images just by looking at bad images, and do it
as well (sometimes even better) as if they used clean examples.

Following this idea, we propose how to apply this technique
to spectro-polarimetric images in order to reconstruct weak sig-
nals present in the observations. As the neural network learns
from corrupted images, this technique can be applied to any
telescope, instrumentation, processing pipeline, solar region or
physical observable.

The paper is organized as follows: first we explain how we
implement the Noise2Noise approach with spectro-polarimetric
data, then we demonstrate that the technique works on synthetic
data and finally we apply it to the real solar data.

2. Neural network denoising

2.1. Training process

Prior to the study by Lehtinen et al. (2018), it was common to
train a regression model with θ parameters, such as a convolu-
tional neural network, with a large number of pairs (xi, yi) of
corrupt inputs and clean targets. The parametric mapping fθ was
then optimized under a merit function that minimizes the dis-
tance between the target and the neural network output. The ob-
tained fθ(x) was finally applied and the noise of corrupted im-
ages reduced. This process, where we would know the correct
answer (supervised learning), is schematically represented in the
upper panel of Fig. 1.

Noisy-clean training

Neural Network

Input Output

Noisy-noisy training

Neural Network

Fig. 1. Sketch of different training processes: the typical supervised
training process where the clean target (answer of the problem) is used
(upper panel) and, when different uncorrelated corrupted images are
used as the input and output of the network (lower panel).

Lehtinen et al. (2018) demonstrated that in case of data cor-
rupted with zero-mean noise, the neural network can be trained
with a large number of pairs (xi, y′i) of corrupted inputs and tar-
gets, corresponding to the same underlying data and indepen-
dent noise realizations, thus eliminating the need for clean data.
This process is illustrated in the lower panel of Fig. 1. This is of
great relevance since in many cases obtaining clean training tar-
gets or creating synthetic examples with correct noise modeling
is very difficult or impossible. That is exactly the case of so-
lar spectropolarimetric measurements, where not only the noise
is a fundamental factor, but the images are also affected by the
telescope and the image reconstruction. Unlike the first case, the
neural network derives insights in an unsupervised way directly
from the data itself. From the pairs of independent noisy obser-
vations of the same underlying clean image, the network can re-
trieve the information about the noise. We take advantage of, for
example, the temporal redundancy in time series measurements,
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which means, the noise is the main difference between the two
images.

In the following, we show the implementation of this new
training technique to spectropolarimetric data, as well as the neu-
ral network architecture and the optimization process. For many
of the technical details, we refer the reader to our previous work
(Díaz Baso & Asensio Ramos 2018) that contains an elaborate
introduction about neural networks. We explain in that work the
motivation of using each type of layer and the fundamentals of
the training process.

2.2. Topology and optimization

The technique is implemented using an encoder-decoder archi-
tecture. A schematic view of it is displayed in Fig. 2. This net-
work is very fast and has demonstrated to be able to beat the best
previous methods by using only very few images (Ronneberger
et al. 2015). It decreases and increases the dimensions of feature
maps to capture features at different image scales. In the encoder
phase, the spatial size of images is reduced and in the decoder
phase, the original size is recovered by upsampling.

Input Output

Encoder Decoder

(n x 3 x 3) (n x 3 x 3)

(2n x 3 x 3) (2n x 3 x 3)

(4n x 3 x 3)

Fig. 2. Architecture of the convolutional network used for denoising,
made of many Conv+ELU gray blocks and the concatenation (arrows)
of previous feature maps. In an autoencoder, the information is com-
pressed (encoder) and recovered later (decoder).

This specific topology is commonly known as U-network1

(Ronneberger et al. 2015) because it includes skip connections
between mirrored layers in the encoder and decoder part. Fol-
lowing the improvements of Huang et al. (2016), it does not
combine features through summation before they are passed into
a layer; instead, it combines features by concatenating them (ar-
rows in Fig. 2). In the encoder part of the network 2, the informa-
tion is transferred between gray blocks and a max-pooling layer
(red block) that reduces the size by half. Each gray block con-
sists of a convolution layer with n kernel filters (of size 3×3)
and ReLU activating function (Nair & Hinton 2010). To pre-
serve the amount of information, the number of feature maps
(filters) is doubled after each max-pooling layer (quoted above
each block of Fig. 2). All convolutions use a reflection padding
to keep the original size and avoid border effects. In the decoder

1 A similar implementation in keras can be found in https://
github.com/pietz/unet-keras
2 A detailed explanation of the architecture of the network and the
number of filters in each block is given in Appendix B.1

part, we have implemented a nearest-neighbor upsampling layer
followed by a convolution layer (highlighted as blue blocks in
Fig. 2) instead of the standard transpose convolution to avoid
checkerboard artifacts in the upsampling3. The last layer, drawn
as a dark-gray block, is a 1×1 convolution layer that quickly col-
lapses the previous information into the output.

After extensive tests, we have verified that this topology is
the perfect balance between accuracy and speed of execution.
We take as the best neural network model the one whose infer-
ence using the validation set is closer to the expected output. The
speed of execution is of great importance since the network will
be applied to each wavelength independently for each Stokes
parameter and for each frame of the time series. Then, the di-
mension of the input and the output is always a two-dimensional
image. Other architectures are also studied in section 3.2.3.

Although this complex neural network4 is able to recreate
the results we show, simpler implementations can lead to simi-
lar results but not as accurate. An example of this is the neural
network presented in Díaz Baso & Asensio Ramos (2018) (with-
out the last upsampling layer). It is a network that keeps the size
of the image throughout its topology. This architecture has been
used before also as a denoiser in recent studies (Zhang et al.
2017, 2018; Ehret et al. 2018; Mansar 2018). While its compo-
sition is similar, the U-network topology has been designed to
reduce dimensionality and efficiently capture features at differ-
ent scales.

The neural network is trained to optimize a merit function
that measures how different is the network output when com-
pared to target images. In the following, we first show the re-
sults using this topology and training the network with the merit
function L2 = 1/N

∑N
i ( fθ(xi) − yi)2, i.e. the quadratic differ-

ence between the output data and the target. If the data is af-
fected with a significant (up to 50%) outlier content, the L1 =
1/N
∑N

i | fθ(xi) − yi| the merit function would be more suitable,
making outliers less important. We have tested both and the dif-
ferences were very small, with L2 giving better results. A differ-
ent merit function is used for estimating the uncertainty of the
inference in section 3.1.1.

The neural networks are optimized with the Adam stochas-
tic gradient descent type algorithm (Kingma & Ba 2014) with
a learning rate of 10−4 that was kept constant during the whole
training. In all the examples we have kept a very low or non-
existent weight regularization. Although an increase in it gener-
ates smoother structures (more spatial coherence), we lose the
ability to resolve details. This extra regularization is not really
necessary since both input and output already contain the nec-
essary noise to regularize the weights and the behavior of the
network. No batch normalization layers were used. The network
weights were initialized following He et al. (2015).

After finding a topology that responds successfully to our
objective, we studied whether increasing the number of filters
(and therefore feature maps) could improve the accuracy of the
network. For this, we have trained models with different amounts
of filters at the entrance of the network and we have found that
n =32 filters give us a good balance between accuracy and speed.

Finally, the typical training strategy depends on the data set
and the instrumentation used. Therefore in each section, we give
details of the specific procedure that was carried out.

3 https://distill.pub/2016/deconv-checkerboard/.
4 The code of the network and the weights obtained after the training
can be found in https://github.com/cdiazbas/denoiser/.
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Fig. 3. Result of the reconstructions of synthetic data with an original noise level of 3×10−3Ic, using clean targets (upper panel) and using noisy
targets (lower panel). The left column shows the original image (and affected by noise in the upper half), the central panel the image inferred by
the neural network and the right panel the difference between the previous panels of the same row.

3. Results

This section shows how the technique performs in both a super-
vised environment (synthetic data) and in real observations. In
these examples, the only difference is the data training, while
the network architecture and the rest of the parameters remain
the same. The training is done with images of size 52×52 in both
cases. This size is chosen arbitrarily so it is large enough to cap-
ture the scale of the noise and not be affected by border effects
during convolutions. Larger patches can also be chosen, but this
would slow down the training process.

3.1. Simulated data set

In order to demonstrate the capabilities of this denoising tech-
nique, we have generated a synthetic case as proof of concept.
With this test, we can assess which effects are due to the in-
trinsic problem of image restoration and which are due to this
new training technique. We use an MHD simulation of a flux
emergence produced with MURaM code (Vögler et al. 2005;
Rempel 2017). The dimensions of the computational domain are
24 × 12 × 8.2 Mm with the grid spacing of 23 and 16 km in
horizontal and vertical direction, respectively. The emergence of
a strongly twisted bipolar magnetic concentration is imposed at
the bottom boundary in the same way as in Cheung et al. (2019).
The horizontal magnetic field is advected within an ellipsoidal
region with axes of 6 and 1.5 Mm through the bottom boundary
set at 1.5 Mm below photosphere. The chosen snapshot is taken
some 1.5 h after, at which point the total amount of horizontal

flux advected in is 6.9 × 1019 Mx. The snapshot covers a variety
of solar conditions from quiet Sun in the external parts to high
magnetic field concentrations in the center of the FOV. Since our
denoising technique does not depend on the spectral line or size
of the magnetic features detected, we choose to synthesize the
Fe i line at 6302 Å. The polarized spectrum of the Fe i line at
6302 Å is synthesized over the wavelength range of 1 Å with a
spectral resolution of 50 mÅ. The synthetic spectrum emergent
from this numerical simulation has been calculated under the as-
sumption of local thermodynamic equilibrium (LTE). To simu-
late a validation/test set slightly different from the training, we
have synthesized the Fe i line at 6301 Å in LTE using the STiC
code (de la Cruz Rodríguez et al. 2016; de la Cruz Rodríguez
et al. 2019), to check the generalization of the network and to
test the network. As the Fe i line at 6302 Å has a larger Landé
factor, the training set contains a larger range of signals.

To compare the accuracy of this new technique with respect
to the standard noisy-clean method, we have trained two neural
networks, one with noisy-clean pairs and the other with noisy-
noisy pairs. Both networks are trained during 20 epochs. We
have found that 20 epochs are sufficient for the network to reach
the optimal state. As our network is not able to memorize random
noise (independent in each batch), the merit function achieves a
constant asymptotic tendency, without overfitting in case more
epochs are used. We have used a batch size of 10 images us-
ing a total of N = 10000 patches of 52×52 pixels randomly ex-
tracted from the whole simulation. They are also randomly ex-
tracted from the spectral positions and from different Stokes pa-
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rameter (Q, U and V). The validation consists on 1000 patches
of the same size from the other spectral line. The images have
been trained adding Gaussian noise with a standard deviation of
3×10−3Ic. Figure 3 shows the result of both reconstructions, us-
ing clean targets (upper row) and using noisy targets (lower row)
of a monochromatic image of Stokes V at 6301.4 Å over a part
of the simulated field of view.

In the training process, both models converge similarly
quickly and the denoising performance achieves almost the same
precision. A proof of the latter is shown in the last column of
Fig. 3, where both neural networks succeed in correcting up to a
level of 6×10−4Ic. This value has been calculated as the standard
deviation between the original clean image and the one inferred
by the neural network. This means that we would need to aver-
age around 25 images (3 × 10−4Ic ·

√
25 = 6 × 10−4Ic) to reduce

the noise achieved by the neural network.
Another confirmation that the neural network is recovering

signal correctly is the fact that when we subtract the recon-
structed from the noisy image we obtain the same Gaussian dis-
tribution with a standard deviation of 3×10−3Ic, which we added
to the synthetic image. Finally, there are no clear patterns that
show that the network works much better in one place than in an-
other. With this example we have shown that using clean targets
is not necessary for this application and that real observations
can be used to train a neural network.

When the denoising method is applied to an image, both the
spatial scale and the amplitude of the signal affect the output
of the NN. In situations where the spatial scale of a feature is
close to the smallest scale allowed by our sampling and its am-
plitude is close to the noise level, the network will struggle to
differ noise from real signals. When the data are oversampled,
the larger spatial extent of the same feature in pixels allows the
network to better differentiate noise from signal. We have illus-
trated these two situations in Fig. 4.

0.0 0.1 0.2 0.3 0.4 0.5
 [pix 1]

10 3

10 2

10 1

100

101

102

103

P(
)

Power Spectrum of the image
Simulation
Simulation Convolved
Simulation+Noise
DNN
DNN - convolved

Fig. 4. Comparison of the power spectrum calculated for the simulation
and the reconstruction with the neural network trained with the original
or a degraded resolution.

The red curve depicts the critically sampled case, whereas
the black curve depicts an oversampled case. In the latter, we ba-
sically decreased the resolution of the data by applying a spatial
Gaussian filter with a full width half maximum of 2 pixel before
adding the noise to the synthetic data. This degradation effec-
tively makes the image oversampled in the original pixel grid.

In the oversampled case, most of the detail is recovered after the
denoising step and both dashed and dotted lines closely overlap
with each other. In the critically sampled case, there is a clear
suppression of the highest spatial frequencies.

In this section, we have generated uncorrelated spatial noise,
but in real observations, due to instrumentation and the post-
processing, this quantity is highly correlated. That is, however,
not a problem for the neural network as already shown by Lehti-
nen et al. (2018) and Ehret et al. (2018). It is possible to de-
duce the noise from the training data and remove its contribution
whatever its complexity: uniform, multiplicative, correlated or
salt-and-pepper. An example of complex corruption can be seen
in the results with real observations.

3.1.1. Uncertainty in the inference

After demonstrating that it is possible to obtain a good estima-
tion of the clean image, it is also necessary to have at least an
idea of the uncertainty of our result, something that in principle
this simple implementation does not capture. This information is
really important for the later magnetic field inference and its re-
spective uncertainty according to the reconstruction of the neural
network.

Traditionally, Bayesian statistics have been used to infer the
uncertainty for simple forward models with a reasonable num-
ber of parameters, usually less than 10 (e.g. Asensio Ramos
et al. 2007), as these calculations usually come with a prohibitive
computational cost. However, our neural network model has a
several orders of magnitudes more parameters than the previ-
ous models. For that reason, several studies (among them, Gal &
Ghahramani 2015b; Gal et al. 2017; Kendall & Gal 2017) have
shown a practical technique to estimate the total uncertainty. Un-
certainty is usually classified into two categories: the epistemic
and the aleatoric uncertainty.

Epistemic uncertainty is related to unexplored regions of the
mapping space and it is often called model uncertainty because it
give us information how well the network learns about the data.
Epistemic uncertainty can be estimated using the dropout tech-
nique (Hinton et al. 2012, hereafter dropout). In this technique a
certain fraction of neurons are randomly deactivated when eval-
uating the network. Many modern models use this technique to
avoid over-fitting during training. However, it can also be used
for testing in which case the output is evaluated by dropping
weights randomly and generating different predictions. So us-
ing this method, we can also assess the robustness of the predic-
tions given by the neural network. After performing these Monte
Carlo calculations, the mean value of predictions is the final pre-
diction and the standard deviation of predictions is the model
uncertainty.

The aleatoric uncertainty is also known as statistical uncer-
tainty as it takes into account the uncertainty inherent in our
training database and the error made by simplistic models un-
able to fit complex data. One strategy to capture this uncertainty
is to assume that such distribution is Gaussian and dedicate one
output of the neural network to estimate the variance (σ2

θ) via
maximum likelihood estimation (Kendall & Gal 2017):

L = 1/N
N∑
i

( fθ(xi) − yi)2/2σ2
θ + logσ2

θ/2. (1)

By including the variance in the formulation of our loss func-
tion, this uncertainty is learned by the neural network during the
training process. Then, the total uncertainty is the square root
of the sums of the epistemic and aleatoric uncertainty squared.
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The uncertainty can be assumed constant for every point (ho-
moscedastic) or can vary with the input (heteroscedastic). We
have used the latter assumption because the error of the neural
network increases with the signal as the probability of removing
a signal with higher amplitude is also higher (something that can
be identified in the residuals).

We have used the recently published python-Keras package
astroNN5 developed by Leung & Bovy (2019); Mackereth et al.
(2019). To implement this new methodology we have taken our
topology and modified the last layer so that it has two outputs.
In our case, we have obtained better results using a new small
network made of eight convolutional (gray) blocks to estimate
the uncertainty and our initial network (architecture displayed in
Fig. 2) to estimate the clean image. In the ideal case, where the
neural network is able to obtain the perfect clean version, the
value of σθ will be the inherent noise of the data because the
network is comparing the clean image with a noisy output. In
the real case, the value of σθ will be higher than the noise, so the
deviation from the known noise level will capture the error of
the network, a quantity that perfectly matches with the residuals
calculated between the output of the network and the original
image (see Fig. A.1 in the Appendix). Following Leung & Bovy
(2019), we have redefined the variance of the likelihood as the
total of the variance inferred by the network and the intrinsic
noise present in the data: σ2

θ = σ2
net + σ2

noise. We want to note
that the training process of this network was more difficult and
slower than the previous implementation. The problem may lie
in the contribution of each term of the loss function during the
optimization.

Finally, in order to do the Monte Carlo, we have to insert
a dropout layer for every weight layer of the network (except
with the first and last layers). The free parameter, dropout rate,
is chosen to produces the expected error, which is the average
difference between the result of different neural networks. We
have found that a value of 0.01 usually gives good results (Gal
& Ghahramani 2015a).

After training this new network, we obtain clean images very
similar to those shown in Fig. 3 and the uncertainty associated to
each point (an image showing its spatial distribution is displayed
in Fig. A.1 in the Appendix). An example of this output is shown
for a selection of four profiles in Fig. 5. We have chosen profiles
with a very low signal-to-noise ratio to properly verify the ef-
ficiency of the neural network. The uncertainty returned by the
network is of the order of 6 × 10−4Ic, thus fulfilling that most
of the simulation (green) points remain within the red shaded
band estimated by the network. With this synthetic test, we have
finally not only demonstrated the capabilities of the network to
produce a good estimation of the clean image, but we have also
shown the ability of this new neural network to estimate the un-
certainty assuming Gaussian noise statistics.

3.2. Real observations

Perhaps the best observational test case to apply our denoising
technique are Fabry-Perot observations. These two-dimensional
instruments allow for the measurement of a 2D field of view
in narrow-band images across the profile of the spectral line of
interest. The 2D images at each wavelength are obtained succes-
sively at different times and, therefore, the spatial coherence of
the signals is implicit in this technique. We will take advantage
of the temporal redundancy of some observations to generate a

5 https://github.com/henrysky/astroNN
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Fig. 5. Stokes Q and V profiles extracted from 4 different points of
the map: the synthetic profiles (in green), with noise (in gray) and the
output of the neural network (in red), are shown with their respective
color bands indicating twice the uncertainty. The reference wavelength
is λ0 = 6301.5Å.

dataset where the main difference between two time-steps is the
noise distribution, as we showed in the synthetic case.

We have trained a network using two datasets observed with
the CRisp Imaging SpectroPolarimeter (CRISP; Scharmer 2006;
Scharmer et al. 2008) instrument at the Swedish 1-meter Solar
Telescope (SST; Scharmer et al. 2003) in full-Stokes mode. We
have used datasets that cover a variety of solar conditions from
quiet Sun to more active regions. They correspond to observa-
tions taken on 2013-07-22 from 08:33 to 08:58 UT and the other
one on 2013-07-19 from 13:34 to 13:59 UT. The latter dataset
was also used by Asensio Ramos et al. (2017a). These observa-
tions consist of two time series in the Ca ii line at 8542 Å, with
slightly varying seeing conditions.

The observations were reduced following the CRISPRED
pipeline (de la Cruz Rodríguez et al. 2015), that includes:
dark current subtraction, flat-field correction, and subpixel im-
age alignment. The data were reconstructed with Multi-Object
Multi-Frame Blind Deconvolution (MOMFBD; Löfdahl 2002;
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Fig. 6. Results for different wavelengths and Stokes parameters after apply the neural network to real observations. For Stokes Q at −0.17 Å (top
panel) and an example of Stokes V (lower panel) at −0.765 Å.

van Noort et al. 2005). The MOMFBD code applies a Fourier fil-
ter to the reconstructed images that suppresses frequencies above
the diffraction limit of the telescope and which is slightly mod-
ified according to each patch of the image. This processing will
generate an additional correlation between the signal and the
noise of each region.

We use these images as the input and output of our training
set. A total of N = 10000 patches of 52×52 pixels are randomly
extracted from the temporal series. They are also randomly ex-
tracted from the spectral positions and from different Stokes pa-
rameter (Q, U and V). We also randomly extracted a smaller sub-
set of 1000 patches which will act as a validation set to check that
the CNN generalizes well. Again, the network is trained during
20 epochs.

A crucial ingredient for the success of this process is the gen-
eration of a suitable training set of high quality. Physical data
augmentation has been important in reducing the possible effects
of the quick evolution of signals between two time-steps. For
that, we apply rotations, sign changes, etc. In this way, we can,
not only generate a dataset with much more variety but generate
opposite states (for example a region where the signal increases
can be used in reverse order). With that, we achieve that the aver-
age behavior remains constant and the noise is the only different
factor between two frames. In the case of a quick evolution of
the signals between two frames, we might take into account the
motion (e.g. calculating the optical flow) and wrap one frame to
the other (Ehret et al. 2018), however it does not seem to be re-
ally necessary because the training data have been chosen stable
over time.

3.2.1. Monochromatic maps

Once the network was trained it was used on observations of
a region of flux emergence taken on 2016-09-21 from 12:38 to
12:58 UT6. Figure 6 displays the map estimated by the network
for different wavelengths and Stokes parameters. For Stokes Q
(top panel) we have chosen the wavelength at the core of the
spectral line due to its weak signal. In the case of Stokes V (lower
panel), we have chosen a wavelength closer to the wing where
the noise effect is more evident as Stokes V has usually higher
signals.

Like in the synthetic case, we have examined that we do
not lose signals during reconstruction (see the right column of
Fig. 6). Although the amplitudes of the noise pattern correlates
with the strength of the signals, the local spatial average is zero.
This result has not been imposed on the training but is success-
fully obtained at the end of the training.

In this unsupervised training, the network is also not only
able to infer the noise from the image but to also eliminate arti-
facts generated for example by the post-processing. In the case
of Stokes Q, vertical features appear in the pixels with x=580
and are visible in the original image but not in the reconstruc-
tion of the neural network. The neural network is able to solve
this task because although some artifacts are located in the same
location as the sensor, the images used for training have been
slightly rotated to compensate for the solar rotation.

Another interesting point to study is the range of spatial
scales at which the neural network is performing. Figure 7 dis-

6 An example of the neural network applied to the same observations
used for the training is shown in the Appendix C.1
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plays the power spectrum of the images shown in the first row of
Fig. 6. For the second row, the result is very similar. The differ-
ence between the power spectrum of the original image and the
output starts around ν = 0.05 pix−1, which means that the neu-
ral network is operating mainly at scales smaller than 20 pixels,
where the noise is present. As the noise is correlated with the
signals, it does not have a flat spectrum, but a complex one as
shown with a dotted line in Fig. 7. The spectrum of the clean
image decreases down to ν = 0.2 pix−1 where it flattens and then
falls suddenly after the diffraction limit. This indicates that the
network keeps and enhances structures as small as 4 or 5 pixels.
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Fig. 7. Spatial Fourier power spectra of the original image, the output of
the neural network and the difference between them, which is our esti-
mate of the noise. We have marked the diffraction limit of the telescope
as a reference.

3.2.2. Stokes profiles

Once all wavelength images were cleaned, we studied the spec-
tral profile at each point on the map. Figure 8 shows the spectral
profile of some points of the FOV before and after reconstruc-
tion. The most surprising aspect of using this technique is the
high spectral coherence obtained even without showing such in-
formation during the training. This information is implicitly con-
tained in the original data and only with the spatial reconstruc-
tion we are able to reveal it. This spectral coherence is shown for
example in Stokes Q in the form of a symmetric profile where
the wings tend to zero, something that was never imposed. This
may seem trivial but such behavior is not always observed in the
original data given the high noise level.

We have also drawn the profile at these pixels averaged over
the whole time series. The comparison shows that the recon-
structed profiles are very similar to the average profiles.This in-
dicates that we are able to reproduce a signal similar to the gen-
eral behavior without losing the temporal evolution of the ana-
lyzed time frame.

The remarkable spectral coherence achieved in the Q and U
profiles raises the question of whether we are somehow intro-
ducing it or it is already present in the data. A simple way to
check this is to train the neural network using only Stokes V ,
and as expected, the result is the same. On the contrary, if the
training is done with only Stokes Q and U, the signals obtained
by the network are slightly worse. Having a dataset with strong

5

0

5

Q/
I C 

[x
 1

0
3 ]

Pixel: 182,275

DNN
Original
Average

Pixel: 217,290

DNN
Original
Average

1 0 1
- 0 [Å]

5

0

5

Q/
I C 

[x
 1

0
3 ]

Pixel: 210,284

DNN
Original
Average

1 0 1
- 0 [Å]

Pixel: 20,20

DNN
Original
Average

Fig. 8. Stokes Q profiles extracted from 4 different points of the map: the
original (in gray), the reconstructed by the neural network (in red) and
the average profile in those pixels of the entire time series (in brown).
The reference wavelength is λ0 = 8542.1Å.

signals, at least 2 or 3 times above the noise, is critical because
it makes the training more robust. The network can then differ-
entiate more easily when it is noise and when not. To generate a
balanced training set, one can either set a threshold or take the
wavelengths of the core of the spectral line to promote patches
with higher signals.

Figure 9 illustrates how the performance of the denoising
method worsens when the network is based/trained on images
with a different/wrong spatial scale of noise. Here we trained
the network with the synthetic data from the MHD simulation to
which we added the Gaussian noise of our CRISP dataset. Since
the spatial distribution of the noise in the CRISP data is very
different, more non-Gaussian, only a partial recovery is achieved
when such network is applied to the CRISP data.

The Bayesian neural network implemented with the real
data, reveals that the network uncertainties is of the same order
of magnitude as in the synthetic case, with a typical value around
6 × 10−4Ic. While the intrinsic noise of the observations is lower
than in the synthetic case, the uncertainty is higher than the ex-
pected for this noise level. This is probably because of its com-
plex level of corruption, originated probably in the MOMFBD
reconstruction.

An example of the prediction with the uncertainty is dis-
played in Fig. 10. This estimation is restricted to Gaussian
aleatoric uncertainties. However, in reality, our noise (after the
post-processing) does not fully follow a Gaussian distribution.
Another problem is separating pure noise from the effects com-
ing from evolution. So we have calculated the noise as a moving
(local) standard deviation to take into account the variation of
the noise with the signal. As a result this uncertainty estimation
may be lower than the real one and only with the development
of new techniques we will be able to have better estimations in
the future (Tagasovska & Lopez-Paz 2018).

3.2.3. Constraining the solution

The advantage of the neural network model presented in these
sections is that the inference is independent of the given wave-
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Fig. 9. Output of the network trained with synthetic data and Gaussian
noise independent at each pixel (upper half) and with CRISP data (lower
half).

length or whether the image displays linear or circular polar-
ization. This allows for a more simple and diverse training be-
cause we can use any spectral information from the observations
regardless of which Stokes parameter it belongs, to generate a
large training set.

One can also take into account the spectral information of
the profile to improve the estimation of signals. To study this
possibility, we allow the network to not only be able to under-
stand the spatial information but also to extract the correlation
between the wavelength points and thus estimate the spectral
profiles of the entire FOV at the same time. For this purpose,
we train the first neural network (the one described in Fig. 2
without uncertainties), but now by using a cube of dimensions
nx × ny × nλ (patches of size 52 × 52 × 21 pixels in this case)
as our input/output. By introducing this new dimension as a net-
work input, it gets more difficult to generate a rich variety of
profiles using the same dataset. So we increased the diversity by
generating profiles with the wavelength points in reverse order,
thus doubling the number of existing profiles.

Figure 11 shows an example of the previously chosen pro-
files and their inference with both methods. The new reconstruc-
tion (in green), although not very different from the previous net-
work (in red), shows smother profiles (even when the signal is as
small as the last profile). This improvement is also detected in
the two-dimensional maps. Figure 12 shows the lower right re-
gion of the FOV reconstructed with both methods: only spatial
(left panel) and adding spectral information (right panel). The
average difference between them is around 1.10−4Ic. The right
panel appears with a better-defined structure. An example of this
is an intrusion of a penumbral filament into the umbra and a lot
more structure visible in the background.

The neural network is now specific to the spectral line used
and its sampling (distance and number of wavelength points).
This neural network would no longer be general given that now
the network encodes specific spectral information and we would
need a different one for a different observational configuration or
spectral line. Also, we are not certain if the neural network treats
the spectral information in the correct way. It might correlate
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Fig. 10. Stokes Q and V profiles extracted from 4 different points of
the map: the observed profiles (in gray) and the output of the neural
network (in red) are shown with their respective color bands indicating
twice the uncertainty calculated by the neural network.

wavelength points which are far apart and not really physically
connected. Also, the training set that was chosen to be stable,
might not contain enough information to recognize cases with
strong velocities.

Lastly, another information that we could take advantage of
would be the availability of Stokes parameters. This may be a
good idea but the correlation between the Stokes parameters is
very low. Some remaining correlation may exist due to the de-
modulation process or some physical process that acts in some
cases (e.g. the alignment to orientation conversion; Kemp et al.
1984), but in general the magnetic field will produce different
signals given its geometry and the parameters will be indepen-
dent.

We have tested this idea by training a network that takes as
an input all Stokes parameters Q, U, and V . The training of this
network is more difficult because the network must combine the
information of ∼60 points in wavelength and spatially to gener-
ate a good inference of another ∼60 points. Unfortunately, the
result is not as good as in previous tests. In this case the residu-
als appear patchy with amplitudes of the order of magnitudes of
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the original signal. We probably need a larger network, a more
diverse set of training or a more robust training mode, but with
these preliminary results, we have not seen the need for further
progress using all parameters at the same time.
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Fig. 12. Monochromatic images at the core of Stokes Q after apply
the network trained with monochromatic images (left panel) and with
spectral profiles (right panel). The signals has been clipped to ±8 ×
10−3Ic for both panels.

3.3. Other instrumentation

This technique could also be applied to slit instruments. Slit-
spectropolarimeters provide spectra with all the wavelengths ob-
tained simultaneously, but, only one slice of the field of view at
any given time. This means that observing a 2D region of the
solar surface requires the construction of a raster map by shift-
ing the slit in small increments perpendicular to its direction. In
this case, the retrieved 2D map does not correspond to a single

moment, but its measurement spans during a certain temporal
range. For slow evolving processes, the whole map has a spa-
tial coherence that can also be exploited by this technique. How-
ever, Slit-spectropolarimeters provide spectra with a much better
spectral resolution and a larger spectral range. This implies that
the network will take more time to clean the spectra given the
number of wavelength points.

If we repeat the previous exercise of training a neural net-
work with the full spectral range, it will be a very compli-
cated process given the number of points if the same topology
is used. Therefore, for slit-instruments, we would recommend
using more robust algorithms such as PCA, which use the spec-
tral information to reduce the noise and without the mentioned
limitations.

4. Discussion and perspectives

In this study, we have proposed a new approach for recovering
signals under a complex noise corruption (photon noise, instru-
mental and post-processing artifacts) using neural networks. The
training of the network is done without a priori knowledge of
clean signals or the corruption level, but only using the same
observations as the generative model. This approach yields re-
sults with the similar quality as compared with the case when
the clean target is given. We have shown that this technique al-
lows us to reveal signals that were strongly affected by the noise,
and we have shown some examples of the improvement of typ-
ical signals obtained in current telescopes, such as the Swedish
1-m Solar Telescope. Although we have used this telescope as an
example, given the generality of the technique, it can be applied
to any telescope, instrument, solar region or physical quantity.

The results presented in the present study are particularly rel-
evant for detecting weaker signals and thus studying the magne-
tization of regions in the chromosphere and corona. Although the
network architecture that we used is very simple, it represents the
first step toward a suite of new tools to remove artifacts, fringes,
and denoise observational data. Our method intrinsically makes
use of the sparsity present in solar data (Asensio Ramos & de la
Cruz Rodríguez 2015), to separate signals from the noise in the
spatial dimension. We have shown both, a method that uses only
spatial information and another one in which the spectral infor-
mation is also added. We have concluded, however, that PCA
techniques seem like a better option to decrease noise along the
spectral direction.

Despite the successful neural networks presented here, we
anticipate that improvements in the quality of the reconstruction
can be achieved:

1. there is still one dimension that we have not exploited and
that contains information that can be used to further reduce
noise: using the temporal coherence during the prediction.
In fact, this last idea is being exploited in videos to make
superresolution (Xie et al. 2018).

2. another merit function could be used to reduce the spatial
blurring in the predictions of the network, for example by us-
ing another neural network as the discriminator as it is done
in Generative Adversarial Networks (GANs; Ledig et al.
2016). There are more complex networks, such as the MSD-
net architecture which uses dilated convolutions to learn fea-
tures at different scales. This approach has even better per-
formance than the U-net model with small training sets (Pelt
& Sethian 2018).

3. it is also fundamentally important to improve the uncertainty
estimation by calibrating the network with new methods that
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are valid for non-Gaussian noise distributions (Maddox et al.
2019).

Finally, including a quick implementation of the optical flow to
counteract the changes between two frames could help to better
preserve the signals and avoid them being blurred by the network
(Ehret et al. 2018).
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Appendix A: Uncertainty calibration

At this point, we show the spatial distribution of the uncertainty
estimated by the network in Fig A.1. To demonstrate that the un-
certainty is well calibrated, we display in the lower panel also the
residuals calculated as the difference between the original image
and the one inferred by the neural network. This comparison pro-
vides the confidence to know that our network is inferring a good
estimation of the uncertainty.
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Fig. A.1. Spatial distribution of the uncertainty calculated by the neural
network (upper panel) and the comparison with the residuals calculated
with the original image as a function of the amplitude of the signal
(lower panel).

Appendix B: Network architecture

The neural network has been developed using the Keras Python
library, with the Tensorflow backend for the computations. A de-
tailed description is given in the Table B.1. For the image-image
training we have used n = 32 and m = 1. For the Ca ii full profile
training we have used n = 32 and m = 21. In the case one wants
to calculate the uncertainty, we need to use the first topology for
the inference and the one described in Table B.2 for the variance

inside the same network, so the network has one input but two
different outputs.

Layer # filters Function
Conv2D+ReLU 1 n Conv 3×3 + ReLU
Conv2D+ReLU 2 n Conv 3×3 + ReLU

MaxPooling 1 n Maxpooling 2×2
Conv2D+ReLU 3 n × 2 Conv 3×3 + ReLU
Conv2D+ReLU 4 n × 2 Conv 3×3 + ReLU

MaxPooling 2 n × 2 MaxPooling 2×2
Conv2D+ReLU 5 n × 4 Conv 3×3 + ReLU
Conv2D+ReLU 6 n × 4 Conv 3×3 + ReLU

Upsampling 1 n × 4 Upsampling 2×2
Conv2D+ReLU 7 n × 2 Conv 3×3 + ReLU

Concatenate 1 n × 2 Concat with Conv2D+ReLU 4
Conv2D+ReLU 8 n × 2 Conv 3×3 + ReLU
Conv2D+ReLU 9 n × 2 Conv 3×3 + ReLU

Upsampling 2 n × 2 Upsampling 2×2
Conv2D+ReLU 10 n Conv 3×3 + ReLU

Concatenate 1 n Concat with Conv2D+ReLU 2
Conv2D+ReLU 11 n Conv 3×3 + ReLU
Conv2D+ReLU 12 n Conv 3×3 + ReLU

Network Output m Conv 1×1
Table B.1. Network architecture used in our experiments. Number of
network input feature maps n and the dimension of the output m depend
on the experiment.

Layer # filters Function
Conv2D+ReLU 1 n Conv 3×3 + ReLU
Conv2D+ReLU 2 n Conv 3×3 + ReLU
Conv2D+ReLU 3 n Conv 3×3 + ReLU
Conv2D+ReLU 4 n Conv 3×3 + ReLU
Conv2D+ReLU 5 n Conv 3×3 + ReLU
Conv2D+ReLU 6 n Conv 3×3 + ReLU
Conv2D+ReLU 7 n Conv 3×3 + ReLU
Conv2D+ReLU 8 n Conv 3×3 + ReLU

Conv2D 13 1 Conv 1×1
Variance Output - −Abs(x)−12

Table B.2. Network architecture to calculate the variance. Given that
the variance in log units is a big negative number, to accelerate the con-
vergence of the network we had to use an additional layer to constrain
its value.

Appendix C: Validation set

Here we show some maps similar to the one presented in pre-
vious sections where the neural network is applied to the same
observations used for the training process. In this map, we can
verify the generalization during the training process.
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Fig. C.1. Monochromatic maps of the result of the neural network applied to the same observations used for the training process.
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