Metadata Extraction from Raw Astroparticle
Data of TAIGA Experiment

Igor Bychkov!, Julia Dubenskaya?, Elena Korosteleva?, Alexandr Kryukov?,
Andrey Mikhailov!, Minh-Duc Nguyen?, and Alexey Shigarov!:

! Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of
Russian Academy of Sciences, Lermontov St. 134, Irkutsk, Russia
shigarov@icc.ru
2 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,
Leninskiye Gory 1(2), Moscow, Russia
kryukov@theory.sinp.msu.ru
3 Institute of Mathematics, Economics and Informatics, Irkutsk State University,
Gagarin Blvd. 20, Irkutsk, Russia

Abstract. Today, the operating TAIGA (Tunka Advanced Instrument
for cosmic rays and Gamma Astronomy) experiment continuously pro-
duces and accumulates a large volume of raw astroparticle data. To be
available for the scientific community these data should be well-described
and formally characterized. The use of metadata makes it possible to
search for and to aggregate digital objects (e.g. events and runs) by time
and equipment through a unified interface to access them. The important
part of the metadata is hidden and scattered in folder/files names and
package headers. Such metadata should be extracted from binary files,
transformed to a unified form of digital objects, and loaded into the cat-
alog. To address this challenge we developed a concept of the metadata
extractor that can be extended by facility-specific extraction modules. It
is designed to automatically collect descriptive metadata from raw data
files of all TAIGA formats.

Keywords: Data life cycle management - Metadata extraction - As-
troparticle data.

1 Introduction

Nowadays, large-scale setups used in the experimental astroparticle physics gen-
erate a large volume of data. This trend gives rise to a number of emerging issues
of big data management [1]. Some activities should be carried out continuously
across all stages of the astroparticle data life cycle [2] and open science [3,4],
the model of free access to data, for the astroparticle physics.

The Russian-German astroparticle data life cycle initiative* [2] aims at de-
veloping an open science system to support collection, storage, analysis, sharing

4 https://astroparticle.online

and reuse of data produced by TAIGA® experimental facilities [5]. This sys-
tem is designed to be a common data portal of two independent observatories
and at the same time for consolidation of an analysis for astroparticle physics
experiments.

One of the important issues is how to efficiently manage raw astroparticle
data to support their availability and reuse in future. The long-term preservation
of raw data as originally generated is essential for re-running analysis and repro-
ducing research results. To be accessible for the scientific community raw data
should be well-described by descriptive, structural, and administrative meta-
data. The use of such metadata makes it possible to search for and to aggregate
raw astroparticle data through a unified interface to access them.

Metadata is useful on all stages of the data life cycle we considered in our
initiative [2]: data availability covers user requests to data through metadata;
data analysis can enrich metadata; simulations can generate metadata; open
access is implemented by metadata describing ownership and rights; education
in data science uses metadata of educational resources; data archiving provides
a long-term data preservation alongside metadata.

Currently, the TAIGA experimental facilities use five unique binary file for-
mats for representing raw data produced by the gamma ray setups: TAIGA-
HiSCORE [6] and TAIGA-TACT (7], and the cosmic ray setups: Tunka-133 [6],
Tunka-Grande [8], and Tunka-Rex [9]. They are not accompanied by well-organized
metadata. Some scattered metadata are hidden in names and package headers of
raw data files. There is neither conventional terminology used in the experiments
nor the unified interface for access to the hidden metadata. The main challenge
being considered in this paper is how to extract metadata from raw data.

We propose a concept of the metadata extractor designed to be used in the
astroparticle data storage [10]. The extractor is aimed to automatically collect
descriptive metadata from raw data files of all TAIGA formats and put them
into a catalog of the storage. Its architecture is extensible by facility-specific
extraction modules (add-ons) that can be implemented with a framework for
binary data format description such as “Kaitai Struct”® or “FlexT””. Extracted
metadata should provide searching for and aggregating meaningful chunks of
raw data by both time and equipment.

2 Background

We define the metadata extraction as a characterization of digital objects that
are concealed by raw data. The digital objects significant for purposes of our
initiative are events being registered by detectors. An event as a digital object is
composed of a structured sequence of bits/bytes in binary files. The sequence of
bits/bytes defining such an event can be accessed using a set of unique identifiers
represented in package headers.

® https://taiga-experiment.info
5 http://kaitai.io
" http://hmelnov.icc.ru/flext

Our digital object is also characterized by time and equipment of a run
where it is registered. These properties are scattered over the folder structure,
file names, and package headers. There are some software tools that can be used
for the metadata extraction from binary files. We consider here two kinds of
them: (i) tools for harvesting metadata from binary files and (ii) frameworks for
the binary data format description.

There are several contemporary tools for harvesting metadata from binary
files, including the followings: “NLNZ Metadata Extraction Tool”®, “JHOVE2”?,
“FITS”19, and “GNU Libextractor”'!. Typically, such tools support some wide-
spread file formats (e.g. JPEG, MP3, ZIP) as a source. They store extracted
metadata in XML, JSON, or delimited text files. Their functionality can be
extended by plug-ins or modules for processing specific binary formats.

A workflow for the characterization of digital objects can include the following
steps: identification, i.e. determining a presumptive format used for representa-
tion of a digital object; validation, i.e. determining the conformance of a digital
object to the identified format; eztraction, i.e. deriving metadata of a digital
object significant for purposes of classification, analysis, and use; and assess-
ment, i.e. determining the acceptability of a digital object for a specific use. The
architecture of our metadata extractor is designed on the basis of this workflow.

The state-of-the-art frameworks, such as “Kaitai Struct” or “FlexT”, provide
formal languages for describing binary data formats [11]. They are a satisfac-
tory solution for the issues of raw data documenting, parsing and verifying. Our
previous work [11] demonstrates applicability of binary file format description
languages to specify, parse and verify raw data of TAIGA experiment. The for-
mal specifications implemented for the five formats of the experiments make it
possible to automatically generate the source code of libraries for accessing data
in one of the target programming languages (e.g. C++, Java, or Python). They
demonstrate good performance and allow us to locate files with corrupted data.

Such frameworks can facilitate the extraction of metadata from binary files.
We use format specifications in the formal languages to implement facility-
specific modules that extend the capabilities of our metadata extractor. Each
module relies on a format-oriented data reading library generated automatically
from the corresponding specification by the framework. This allows us to identify
the file format, to validate raw data, and to extract the descriptive attributes of
digital objects.

Among the existing solutions for describing the binary data format, “Kaitai
Struct” and “FlexT” are the most suitable ones in our case [11]. Both provide
the declarative languages for representing file format specifications. Similarly,
they consider a specification as a set of data type definitions. They support
bit-oriented data (bit fields) and variant blocks. Both allow one to generate the
source code of the reading libraries for the raw data formats from specifica-

8 http://meta-extractor.sourceforge.net

9 https://bitbucket.org/jhove2/main/wiki/Home
10 https://projects.iq.harvard.edu/fits
' https://www.gnu.org/software/libextractor

tions. “FlexT” language [12] is more expressive, but “Kaitai Struct” is based
on well-known format, namely YAML. Moreover, “Kaitai Struct” supports more
programming languages for the source code generation.

3 Metadata of TAIGA raw data

An important part of the available metadata characterizing events is hidden
in the folder/file names and package headers of raw data files. There are two
important dimensions, time and equipment, describing each event registered in
a run of a facility (see Fig. 3). These dimensions define a hierarchical structure
of folders with raw data for each facility as follows: a season of measuring (the
folder “YYYY-YY” — a start and end year), a moonless period of measuring

in a month (the folder “mmmYY” — a month abbreviation and year), a night
(the folder “ddmmyy.NN” — a date and a number of run in the night), a cluster
or station (the folder “ffNNN” — a facility and a number), a raw data file

(the folder “ddmmy.NNN” a date and a portion of the raw data writing). Both
dimensions are also presented in package headers inside raw data files. A package
header can include a timestamp with an accuracy from millisecond to nanosecond
depending on the facility, as well as a detector and channel identifier of the
equipment.

Moreover, the runs and events are characterized by some environmental data.
Each run folder can be accompanied by various supplementary files with a
facility-specific description of equipment configuration, triggering, synchroniza-
tion, errors, calibration (e.g. pedestal, current, count rate), and meteorological
measuring. Some facility-specific attributes (e.g. stop-trigger position, detector
number, optical line length, error package status) are also contained in raw data
files. Fig. 3 shows which of the general and facility-specific attributes can be
extracted from raw data to describe events and runs.

Another part of metadata can be derived by processing TAIGA raw data
to describe the following properties: validity (determining corrected and cor-
rupted chunks of data), reliability (calculating check-sums), availability (check-
ing whether downloading data from the storage is possible), accessibility (specify-
ing user rights), popularity (registration of unique user requests and downloads).
Moreover, some artificial neural network models [13] also can enrich metadata
with knowledge on types of detected particles and energy.

In the general case, one event can be represented by several sequences of bytes
in different files produced by one run of a facility. Such parts should be aggregated
into events to be appropriate for the purposes of classification, analysis and use.
The derived metadata can describe how an event is composed of parts. These
metadata can be separated into three levels as follows: L1 — files, L2 — parts
of events linked with files, and L3 — events linked with parts.

The extracted and derived metadata can populate the catalog of the as-
troparticle data storage that we are developing. Thanks to these metadata, user
queries to TAIGA raw data in two dimensions of the following form become
possible:

< Season (Year-Year))
) (' Period (Month) N)

Cluster 1) C Cluster N)

Detector 1 Detector

| |
(Channel 1) () (Channel K) (Channel 1) () (Channel K)

Fig. 1. Aspects of time and equipment in metadata hidden in TAIGA raw data.

GET data WHERE time ==

range = time between start and end (less than a night)
run = a specified run | a calibration run

night = a specified date

moonless month = a period of time (not calendar month)
summer = a summer period of time

GET data WHERE equipment ==
facility = a specified facility
cluster = a specified cluster (station) of a facility

4 Metadata extractor

We propose a concept of the metadata extractor for harvesting attributes of
events and runs from binary files of some facility-specific formats. It implements
an extensible architecture with pluggable facility-specific modules (add-ons) as
shown in Fig. 4. Such modules can be developed based on a framework for
binary data format description, e.g. “Kaitai Struct” or “FlexT”. In this case,
the considered development includes the following steps: exploring raw data,
writing file format specifications, generating the source code of the software
libraries for the binary file parsing, incorporating the generated source code in
the corresponding facility-specific module.

Fig. 4 shows the workflow for the metadata extractor. The workflow starts
with selecting a module that is appropriate to process the input raw data in a
facility-specific format. The selected module crawls the input structure of folders

Facility

| Facility folder
4—| Season (year-year) folder |

\| Period (month-year) folder |

\

Run date and number
(DDMMYY.NN) folder

/

Supplementary
Data

Raw data file

Start Time

Channel(s)

Facility-specific
data (optical line
length, errors, etc.)

Facility-
specific data
(meteo, configuration,
start time, etc.)

Raw
Data File

Cluster (station)
| folder

Cluster
(station) name

Raw data file name

Portion Number (DDMMY.NNN)

Fig. 2. General metadata hidden in TAIGA raw data.

and files to collect attributes being available in the folder/file names. It identi-
fies the format of each input file, parses and validates binary data by using an
appropriate format-specific library to extract metadata from package headers.
The module also collects attributes from the input supplementary files (e.g. fa-
cility configuration file). All extracted metadata are used to build instances of
an event object model. Finally, the extractor generates JSON data from these
instances to upload them into the metadata catalog.

Preliminary, we used “Kaitai Struct” for formally describing the file formats
of TAIGA experiment [11]. The implemented format specifications allowed us to
generate source code in C/C++, Python, Java for parsing and validating binary
data. The libraries were tested on real data: 89K files of Tunka-133, Tunka-
Grande, Tunka-Rex and 120K files of TAIGA-HiSCORE, and TAIGA-IACT
formats. They can be adopted to be used in the workflow for the metadata
extractor.

The metadata extractor can be incorporated in the micro-service architecture
of the distributed storage of astroparticle data [14, 15] we are developing. The
architecture involves placing instances of the metadata extractor on file storage
nodes locally. This allows an instance to request raw data through CernVM!'?2
file system without their transferring among nodes of the distributed storage.
Each operating instance populates the centralized catalog with extracted meta-
data. The interaction with the catalog is provided by GraphQL'? API (appli-
cation programming interface). The architecture implements this interface via

12 https://cernvm.cern.ch/portal/filesystem
3 https://graphql.org

Plugable facility-specific extraction module

Confirm this module

All files
of arun

Select an
extractor ‘

A

Extract MD from | _ _ | Crawl & collect the Facility-specific
folder names |~ ~| folder structure folder structure
\ \ »| Identify a format %ﬁ\
Build an Extract MD from 9
— obiect [eyidanies | Parse & validate Format-specific lib(s)
model > data (Kaitai St

A \
Extract MD from | _ | Crawl & collect the Format-specific suppl.
suppl. data - g suppl. data data folder names)

| T

Generate
JSON data

\

Digital
objects
(runs, files,
events)

Y

Upload MD |——»|

¥

MD Catalog

Fig. 3. Workflow for the metadata extractor.

Graphene-Python'* library. It also uses the object-relational mapping based on
SQLAIchemy!® on the catalog side. Since all digital objects (events and runs)
we consider are characterized by time, the design of the architecture suggests
to use TimeScale'%, a time series database management system, for organizing
metadata stored in the catalog.

5 Conclusion and further work

The best practices of scientific data maintenance recommend keeping raw data.
This ensures facilitating reproducibility of published results and future reuse
with an advanced data analysis and processing. The TAIGA experiment pro-
duces and accumulates a large volume of raw astroparticle data. To be available
for the scientific community they should be accompanied by metadata with a
unified interface of access.

In our case, the important part of the metadata hidden and scattered in
raw data. Such metadata should be extracted from binary files, transformed
to a unified form of digital objects, and loaded into the catalog. To address

' https://graphene-python.org
15 https://www.sqlalchemy.org
16 https://www.timescale.com

this challenge we have developed a concept of the metadata extractor that can
be extended by facility-specific extraction modules. The extractor is aimed to
automatically collect descriptive metadata from raw data files of all TAIGA
formats.

Further work for the incorporation of metadata in the astroparticle data life
cycle requires the following steps: unifying the terminology (conforming a the-
saurus); determining a set of user requests to the metadata catalog; determining
a set of hidden and derived attributes describing the digital objects; implement-
ing the metadata extractor; developing the metadata catalog implementing a
unified interface of access.

We believe that metadata will be useful on all stages of the astroparticle
data life cycle we consider in our initiative. Metadata can also simplify the
software development for astroparticle data exchanging and aggregation from
various sources in the case of multi-messenger analysis. We plan to share our
experience of extracting metadata from raw data with other scientific collabora-
tions.

6 Acknowledgments

This work was financially supported by the Russian Scientific Foundation (Grant
No 18-41-06003).

References

1. Y. Demchenko, Z. Zhao, P. Grosso, A. Wibisono, and C. de Laat, “Addressing
big data challenges for scientific data infrastructure,” in 4th IEEE International
Conference on Cloud Computing Technology and Science Proceedings, pp. 614-617,
2012.

2. e. a. Bychkov I., “Russian-german astroparticle data life cycle initiative,” Data,
vol. 3, no. 4:56, 2018.

3. P. A. David, “Understanding the emergence of ‘open science’ institutions: func-
tionalist economics in historical context,” Indus. & Corp. Change, vol. 13, no. 4,
pp- 571-589, 2004.

4. B. A.e. a. Nosek, “Promoting an open research culture,” Science, vol. 348, no. 6242,
pp- 1422-1425, 2015.

5. Budnev, N.; Astapov, I.; Bezyazeekov, P.; Bogdanov, A.; Boreyko, V.; Biiker, M.;
Briickner, M.; Chiavassa, A.; Chvalaev, O.; Gress, O. et al, “The TAIGA exper-
iment: from cosmic ray to gamma-ray astronomy in the Tunka valley,” J. Phys.
Conf. Ser., vol. 718, no. 5, p. 052006, 2016.

6. V. V. Prosin and et al, “Results from Tunka-133 (5 years observation) and from
the Tunka-HiSCORE prototype,” EPJ Web Conf., vol. 121, p. 03004, 2016.

7. L. A. Kuzmichev and et al, “TAIGA Gamma Observatory: Status and Prospects,”
Phys. Atom. Nucl., vol. 81, pp. 497-507, 2018.

8. R.D. Monkhoev and et al, “The Tunka-Grande experiment: Status and prospects,”
Bull. Russ. Acad. Sci., vol. 81, no. 4, pp. 468-470, 2017.

10.

11.

12.

13.

14.

15.

P. A. Bezyazeekov and et al, “Measurement of cosmic-ray air showers with the
Tunka Radio Extension (Tunka-Rex),” Nucl. Instrum. Meth., vol. A802, pp. 89—
96, 2015.

A. P. Kryukov and A. P. Demichev, “Architecture of distributed data storage
for astroparticle physics,” Lobachevskii Journal of Mathematics, vol. 39, no. 9,
pp. 1199-1206, 2018.

I. Bychkov and et al., “Using binary file format description languages for
documenting, parsing, and verifying raw data in TAIGA experiment,” CoRR,
vol. abs/1812.01324, 2018.

M. A. Khmel'nov A., Bychkov I., “A declarative language FlexT for analysis and
documenting of binary data formats,” Proceedings of ISP RAS, vol. 28, no. 5,
pp. 239-268, 2016.

E. B. Postnikov, A. P. Kryukov, S. P. Polyakov, D. A. Shipilov, and D. P.
Zhurov, “Gamma/hadron separation in imaging air cherenkov telescopes using
deep learning libraries tensorflow and pytorch,” Journal of Physics: Conference
Series, vol. 1181, p. 012048, 2019.

A. P. Kryukov and A. P. Demichev, “Architecture of distributed data storage
for astroparticle physics,” Lobachevskii Journal of Mathematics, vol. 39, no. 9,
pp. 1199-1206, 2018.

A. Kryukov and M.-D. Nguyen, “A distributed storage for astroparticle physics,”
EPJ Web of Conferences, vol. 207, p. 08003, 2019.

