Data Aggregation in the Astroparticle Physics
Distributed Data Storage*

Minh-Duc Nguyen![0000-0002=5003-3623] © Ajexander Kryukov', Julia
Dubenskaya', Elena Korosteleva!, Igor Bychkov?, Andrey Mikhailov?, and
Alexey Shigarov?

! Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, 1/2
Leninskie Gory, 119991, Moscow, Russia
nguyendmitri@gmail.com
2 Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of
Russian Academy of Sciences, Lermontov st. 134, Irkutsk, Russia
shigarov@icc.ru

Abstract. German-Russian Astroparticle Data Life Cycle Initiative is
an international project whose aim is to develop a distributed data stor-
age system that aggregates data from the storage systems of different as-
troparticle experiments. The prototype of such a system, which is called
the Astroparticle Physics Distributed Data Storage (APPDS), has been
being developed. In this paper, the Data Aggregation Service, one of
the core services of APDDS, is presented. The Data Aggregation Service
connects all distributed services of APPDS together to find the necessary
data and deliver them to users on demand.

Keywords: Distributed storage - Data aggregation - Data lake.

1 Introduction

The amount of data being generated by various astroparticle experiments such
as TAIGA [1], KASCADE-Grande [2], MAGIC [3], CTA [4], VERITAS [5], and
HESS [6] is tremendous. Processing data and, more importantly, delivering data
from different experiments to end-users are one of the real issues in open science
and particularly in open access to data. To address this issue, the German-
Russian Astroparticle Data Life Cycle Initiative had been started in 2018. The
primary goal of the project is to develop a prototype of a distributed storage
system where data of two physical experiments, TAIGA and KASCADE-Grande,
are aggregated in one place and to provide a unified access mechanism to end-
users.

Such a prototype has been being developed and is called Astroparticle Physics
Distributed Date Storage (APPDS). The design of the system is based on two
key principles. The first one is creating no interference with existing data stor-
age systems of the physical experiments. This principle is critical since most

* Supported by the Russian Science Foundation, grant No. 18-41-06003.

existing collaborations in astroparticle physics, not only the collaborations of
TAIGA and KASCADE-Grande experiments, have been historically using their
own stack of technologies and approach to data storage. Any change to the ex-
isting data storage systems might cause potential problems which are hard to
be discovered. The second principle is using no computing resources at the sites
of the storage systems to handle users’ queries. This principle leads to creating
a global metadata database where the data description from all storage systems
is aggregated in one place. All searching and filtering operations are performed
within the global metadata database. The operation results are delivered to users
via a web interface. Actual data transfer from the existing data storage systems
takes place only when users want to access the inside content of a file. Thus,
APPDS causes no load to the computing resources at each site; the only load on
the data storage systems is data delivery.

This article is organized as follows. In the second section, the architecture
overview of APPDS is presented. Section 3 is dedicated to the design of the Data
Aggregation Service, which is the core of APPDS, and the stack of technologies
that have been used. In conclusion, the current state of the service is presented.

2 APPDS architecture

Exp.
facilities

:LL External e

- resources

\ i Aggregation service __ }4—» MDC

‘Application : "I_ 3 . e
server | f Request

*_Anaysis § GUI/API

Fig. 1. APPDS architecture

The architecture overview of APDDS is presented in Fig.1. S1, S2, S3 are data
storage instances of the physical experiments. Inl is the original data input. In2
indicates the case when the original data from Inl, which are already stored in a
storage instance, are being reprocessed. At the level of data storage instances, to
preserve the original data processing pipeline, a program called Extractor (E1) is
injected into the pipeline. In most cases, input data are files. After standard pro-
cessing, the files are passed to the Extractor. The Extractor retrieves metadata
from the files using the metadata description (MDD) provided by the develop-
ment groups of the physical experiments, sends the metadata to the Metadata
Database using its API, and passes the files back to the pipeline. If the data
need to be reprocessed, the same pipeline is applied but with a different type of
the Extractor (E2).

The files of each storage instance are delivered to the Data Aggregation
Service by the Adapter, which is a wrapper of the CernVM-FS server [7].

To retrieve necessary files, the user forms a query using the web interface
provided by the Data Aggregation Service. When the Data Aggregation Service
receives the user query, it asks the Metadata Database for the answer. When
the Metadata Database answers, the Data Aggregation Service generate a cor-
responding response and delivers it to the user.

All components of APPDS are talking to each other via RESTful API [8].
3rd party application services can also talk to APPDS via RESTful API. The
key business logic of APPDS is implemented in the Data Aggregation Service
whose design and implementation are considered in the next section.

3 Data Aggregation Service

Figure 2 shows how the components of the Data Aggregation Service are con-
nected and how they interact with other services of APPDS. The user interacts
with APPDS via the Web Interface provided by the Data Aggregation Service.
Using the Web Interface, the user can make a query to search for necessary data
accumulated by APPDS from all data storage instances. The key component
of the Data Aggregation Service is the Core Controller. Whenever it receives a
query, the following query processing pipeline is applied:

— Query registration

— Cache lookup

— Metadata Database lookup

— Quick response to the user

— Full response generation and preparation for delivery

3.1 Query Types

There are two types of queries that a user can make using the Web Interface of
Data Aggregation Service. Identification queries are used to retrieve the basic
information about the resources provided by APPDS such as facilities, clus-
ters, detectors, data channels, data authorities, permissions, and available data.

. Data Aggregation Service -
"
——
=
HTTP Server Cache Manager Metadata
x« Database
4@‘

2. Cache
Hit/Miss

7
. *Q, d
S 5 1 AR
S
s >0 o
. s, %ot S >
. o
\ 3
Web Interface ™.
- Core

)
B0 4y Controller Data
I , :” @" - Storage 1
2 > g £y
“ %, 'E £ :
& % % L :
% a
Local File Buffer \%,)
(CernVM-FS
CernVM FS

User Repositories)

Global Mountpoint Data
(CernVM-FS Clients) Storage N

Fig. 2. Data Aggregation Service Design

Search queries are used when the user wants to look for the available data us-
ing a list of filters like data availability interval, energy range, facility location,
detector types, data channel specification, weather condition, etc. Typical data
lookup scenarios that users might create are:

— data obtained by one facility or all available facilities for a certain period;
— season data which start from September to the end of May;

— data obtained in a testing period or a specific run;

— regular monthly or weekly data.

The obvious choice to implement the dialogue between the Web Interface and
the Aggregation Service as separate microservices is to create a RESTful API.
While identification queries are the best candidates to be implemented using
a set of endpoints as in the standard RESTful API, the search queries with
their complex filters are not. Using the standard RESTful API to implement
the search queries leads to complex query sets containing redundant data that
users do not need. The best approach to implement search queries is to use the
Facebook GraphQL [9] instead of the standard RESTful API. By using GraphQL
all typical search queries can be formatted flexibly as a JSON object that later
is sent to the Metadata Database, and the responses to the queries contain the
exact information that the user needs with no redundancy. It is also quite easy
to implement additional filters without breaking compatibility using GraphQL.

3.2 Query Processing Pipeline

Whenever the Core Controller receives a query from the GraphQL Backend,
it calculates the query checksum using the MD5 algorithm. The checksum is
used as the query ID. After that, the Core Controller check against the Cache
Manager to find if such a query is already registered. If not the Core Controller
registers the query with the Cache Manager. The Cache Manager is implemented
based on Redis [10], a popular caching mechanism. The query body is converted
into a Redis hash which is a map composed of fields corresponding to the filters,
each of which contains the filter value.

If the response to the query is already cached and the active period does
not expire, it will be delivered to the user. If the response to the query has not
been cached, the Core Controller forwards the query to the Metadata Database.
The Metadata Database generates a SQL-query according to the original query
and executes it. Depending on the data sources, the response from the Metadata
Database can vary. The response, including data from the TAIGA experiment,
is a set of files which match the filters specified in the original query. The Meta-
data Database also calculates the checksum of the response, adds it to the final
response and sends it to the Core Controller. The Core Controller, in turn, ap-
pends the response to the query in the Cache Manager. After that, the Core
Controllers sends the response to the Web Interface so that the user could look
at it quickly.

At the same time, the Core Controller starts preparing the full response
for delivery. Files from all Data Storage instances are exported to the Data
Aggregation Service as separate CernVM-FS repositories. All repositories are
located inside a Global Mount Point where each subdirectory is the mount point
of each repository. To prepare the data, the Core Controller finds the files in the
Global Mount Point and copies them to a directory in the Local File Buffer. The
directory is then configured as a CernVM-F'S repository for export. The name
of the repository is the same as the query ID. If the user query requires not
the original files but a composition of them, the Core Controller scans through
the original files, composes a new set of files, and puts them into the directory.
Later, if the user wants to work with the files locally, she can mount the prepared
CernVM-FS repository to her computer. The Core Controller also generates an
archive containing all files. The archive is put into the repository and can be
downloaded separately. If the full response to a query is not used more than
a specific time, it will be deleted from the Local File Buffer and the Cache
Manager.

4 Conclusion

Currently, a beta version of APPDS, including the Data Aggregation service, the
Metadata Database, the Adapter, and the Web Interface, has been implemented
and being tested against the storage system of the TAIGA experiment. In the
next release, support for the storage system of the KASCADE-Grande experi-
ment will be included. The first working prototype of the system is planned to

be released this fall. The proof-of-concept tests and performance benchmarks
are also planned after the release.

References

9.

. Bundev N. et al.: The TAIGA experiment: From cosmic-ray to gamma-ray astron-

omy in the Tunka valley. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Febru-
ary 2017, vol. 845, pp 330-333. https://doi.org/10.1016/j.nima.2016.06.041

Apel W.D. et al.: The KASCADE-Grande Experiment. In: Nuclear Instru-
ments and Methods in Physics Research Section A 620 April 2010: pp 202-216.
https://doi.org/10.1016 /j.nima.2010.03.147

Anderhub H. et al.: MAGIC Collaboration. In: 31st International Cosmic Ray Con-
ference (ICRC 2009). https://doi.org/10.15161 /oar.it/1446204371.89

Cherenkov Telescope Array: Exploring the Universe at the Highest Energies.
https://www.cta-observatory.org/

Very Energetic Radiation Imaging Telescope Array System
https://veritas.sao.arizona.edu

High Energy Stereoscopic System. https://www.mpi-hd.mpg.de/hfm/HESS/
Buncic P., Aguado Sanchez C., Blomer., Franco L., Harutyunian A., Mato P.,
Yao Y.: CernVM — a virtual software appliance for LHC applications. In: Jour-
nal of Physics: Conference Series 219 (2010) 042003. https://doi.org/10.1088/1742-

6596/219/4/042003
Fielding R. Th.: Architectural Styles and the Design of Network-
based Software Architectures. https://www.ics.uci.edu/ field-

ing/pubs/dissertation/fielding_dissertation.pdf
Facebook Inc.: GraphQL. https://graphgl.org

10. Redis Labs: Redis documentation. https://redis.io/documentation

