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Mainly based on:

» R. Kondor, et al. “On the generalization of equivariance and
convolution in neural networks to the action of compact
groups.” 2018. ArXiv: 1802.03690

> R. Kondor, et al. “Clebsch—Gordan nets:a fully Fourier space
spherical convolutional neural network.” 2018,ArXiv:
1806.09231

» there are tens of other work on this topic
» indicated above seems to be most appropriate for the general
introduction
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Other works:

» T.S. Cohen, M.Geiger, J.K&hler, M.Welling

» S.Ravanbakhsh
> A couple of reviews:

» (C.Esteves “Theoretical aspects of group equivariant neural
networks”, arXiv:2004.05154

» L.D.Libera “Deep Learning for 2D and 3D Rotatable Data: An
Overview of Methods”, arXiv:1910.14594
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Classical CNN

Sum of Elementwise
Multiplication

Filter
------'“Wm”
Sam imber of ch s
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P=0s=1)

Output (4,4,1)

» ny — height; ny — width; n¢c — width
» f — filter size
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Classical CNN (2)

1 -1

1 with size (n[ A [é_l]), al% being the image in the input

« Input:al
¢ Padding :pm, stride : s[l]
*+ Number of filters :n[é] where each K™ has the dimension: (%, fm,n[é_l])
+ Bias of the n® convolution: bﬁl

* Activation function : 1!/

e Output - alll with size (nﬁq] 'n[v[]/'v gl)
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CNN in Overall
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Main peculiarities /features of CNNs

» thanks to the convolution they are equivariant (covariant),
including the case of invariance;

» if the input image is translated by any vector (t1, t2) (i.e.,
fo/(xl,xz) = f9(x; — t1,x — t2), then all higher layers will
translate in exactly the same way. This property is called
equivariance (sometimes covariance) to translations.

» thanks to the restricted support of the convolution kernel, they
are able to generalize details of images
» the same filter is applied to every part of the image
» = if the networks learns to recognize a certain feature, e.g.,
eyes, in one part of the image, then it will be able to do so in
any other part as well
» The number of parameters in CNNs is much smaller than in
fully connected feed-forward networks, since we only have to
learn the w? numbers defining the , filters rather than
O((m?)?) weights
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Multilayer feed-forward neural network (MFF-NN)

Let Xp,..., X be a sequence of index sets, Vp,..., V| vector
spaces, ¢1,...,¢; linear maps

TR LV/Z—1(X€—1) — LV@(XZ)v

> Ly(X) ' the space of functions {f: X — V}

def : . . ...
> g Ve =V = appropriate pointwise nonlinearities, such

as the ReLU operator.

The corresponding multilayer feed-forward NN is then a
sequence of maps

forrfA—fhe .. .—f,

where

f(x) = o(@rlfi)(x).  xe X

» “Flat” neuron indexing is not convenient for consideration of
transformations.

8/36



Equivariance

Let G be a group and X7, X be two sets with corresponding
G-actions

Tg:X1—>X1, Té:Xg—)Xg.

Let V; and V; be vector spaces, and T and T’ be the induced
actions of G on Ly, (A1) and Ly, (AX2):

Tg: f e f f'(x) = f(Tg-1(x)).

A (linear or non-linear) map ¢: Ly, (X1) — Ly, (A2) is
G-equivariant if V g€ G

¢(Tg(f)) = Tg(4(F)) Vf € Ly, (A1)
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Equivariance (2)

» Equivariance is represented graphically by a so-called
commutative diagram, in this case

T
Ly (A1) — Ly, (Y1)

Pk
Lv,(X2) Tl Ly, (X2)

» Any pointwise functions (non-linearity) are trivially equivariant

» Movements in X commute with pointwise transformation of a
function
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Equivariant feed-forward network

>

| 2

Let AV be a feed-forward neural network (MFF-NN) and G be

a group that acts on each index space Xjy,..., X}.

Let TO, T, ..., Tt be the corresponding actions on

Ly,(Xo), ..., Ly, (XL).

We say that N is a G—equivariant feed-forward network if,
» when the inputs are transformed fy — Tg(fo) (for any g € G),
» the activations of the other layers correspondingly transform as

f > TL(F).

we have not said whether G and Aj, ..., A are discrete or

continuous.

» in certain cases, — when X ~ sphere or other manifolds which
does not have a discretization that fully takes into account its
symmetries, it is easier to describe the situation in terms of
abstract “continuous” neural networks than seemingly simpler
discrete

P in any actual implementation of a neural network, the index
sets would of course be finite.

Note also that invariance is a special case of equivariance,

where T, =id for all g.
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Discretization of a sphere vs. flat spaces
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Convolution on groups and quotient spaces

» convolution of two functions f,g: R — R
(<)) = [ Fx-y)elr)dy. 1)
» convolution when f and g are functions on a compact
group G

(fxg)(u) = /G fluv™) g(v) du(v). uveG. (2)

» For discrete groups the integrals are substituted by sums.
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Cosets
| g

>

and quotient spaces

The set of g € G that map xg — x is a so-called left coset
gH :={gh|heH}.
The set of all such cosets forms the (left) quotient space
G/H.

> = X can be identified with G/H.
V gH coset we may pick a coset representative g’ € gH, and
let X denote the representative of the coset of group elements
that map xg to x.

S0(2)
| so(2)
s’= 50(3)/50(2)/

g
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Convolution on quotient spaces

>

The major complication in neural networks is that Ap, ..., XL
(spaces that the fy, ..., f activations are defined on) are
homogeneous spaces of G, rather than being G itself.

Let G be a finite or countable group, X and ) be (left or
right) quotient spaces of G, f: X — C, and g: YV — C.

We then define the convolution of f with g as

(Fg)(u)=>_ F1uv 1C(v), uveG,. (3)

veG

given f: X — C, we define the lifting
f1°(g) = f(g(x0)), x = g(xo) for some “origin” xq.
> roughly: £1°(g) is const on gH
Thus in this case: f x g: G — C. In general, this is not what
we are looking for.
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Convolution on quotient spaces (2)

> \We need that the convolution on quotient space maps
functions on one homogeneous (transitive, quotient) space
G/H to another also some homogeneous space G/K, i.e.
f — f % g is a map from functions on X = G/H to functions
on Y = H/K. The solution:

» If f: G/H—C, and g: H\G/K — C then we define the
convolution of f with g as f x g: G/K — C with

(f xg)(x) = |H| Z F(Ixy e/m) 8([Y1me/k)- (4)
yeEH\G
> X = XX, Y=Y

» [x]g/n — projection from G to G/H

» All this looks very complicated. Fortunately, for specific
implementations, there are methods that simplify calculations.

16 /36



Convolution on quotient spaces (3)

Most important:

f > g (f+g)

G/H H\G/K G/K

» Dimensionality: e.g.
S$2 =350(3)/SO(2) — S%2=50(3)/SO(2) = 1D-filter

SO(2)\S0(3)/S0(2)
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Main theorem (Risi Kondor & Shubhendu Trivedi)

» Let G be a compact group and A/ be an L + 1 layer
feed-forward neural network
» in which the £'th index set is of the form X, = G/H,,
» where Hy is some subgroup of G.
» Then N is equivariant to the action of G if and only if it is a
G-CNN.

» G-CNN: each of the linear maps ¢1,...,¢, in ANis a
generalized convolution of the form

Ge(fo—1) = fo—1 % xe

with some filter bAS LVg,le((HE—l\G/HE)-
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Convolution and Fourier analysis

» the Fourier transform of a function f on a (countable) group

is defined
=Y f(u)pi(u), i=01,2,..., (5)
ueG
» where pg, p1, ... are matrix valued functions called irreducible

representations (irreps) of G.

> As expected, the generalization of this to the case when f is a
function on G/H, H\G or H\G/K is

=Y pi(u) F1¢(u) i=1,2,....

ueG

» For details see, e.g. H.51. Bunenkun “CneyunansHoie pyHkUMN 1
Teopusi npeacrasnexHnin rpynn’
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Convolution theorem on groups

» Let G be a compact group, H and K subgroups of G, and f, g
be complex valued functions on G, G/H, H\G or H\G/K.

» In any combination of these cases,
fxg(pi) = f(pi) 8(pi) (6)

for any given system of irreps R¢ = {po, p1,- .-}

» Thus for the Fourier transform the convolution becomes the
usual (matrix) multiplication.

» Now we can guess how to implement G-CNN if one starts
from continuous groups: just cut off the Fourier transform
series at L-th term.
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Fourier transformed G-CNN on the example of S2

» The simplest example of possible practical applications —
images from cameras on quadcopters
» but also it is possible that it can be applied in astrophysics (7)

ASTRD3D

» Based on the cited paper by Kondor et al.

» differs from the pioneering papers by Cohen et al. in a number
peculiarities, the main being non-linearities right in Fourier
transformed space

» Cohen et al. perform point-wise nonlinear mapping in real
space moving back and forth between real space and the
Fourier domain that comes at a significant cost and leads to
a range of complications including numerical errors.
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Convolutions on the sphere (1)

» On f5: 72 > R, (with fO being the input image), the neurons
compute f° by taking the cross-correlation of the previous
layer's output with a small (learnable) filter h°,

(B H(x) = by —x) £ H(y), (7)

and then applying a nonlinearity o, such as the Re-LU
operator:

Fo(x) = o((hF°xF7)(x)). (8)

» cross-correlation differs from the convolution by the order of

arguments and despite their name, that is what CNNs actually
compute.

22/36



Convolutions on the sphere (2)

» On S2 cross-correlations hxf is defined as a function on the
rotation group itself, i.e.,

27 g
(hxf)(R) = 417r/o / [hr(0,0)] £(0,¢) cosfdfdp ReSO(3).
(9)

where hg is h rotated by R, expressible as
hr(x) = h(R™*x), (10)

with x being the point on the sphere at position (6, ¢)

» General result by Kondor-Trivedi: if h,g: G/H — R,
(hxf):G—R
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Fourier space filters and cross-correlation

» spherical harmonic expansions

00 V4 0o V4
=S8N Ve h0,0) =Y S YL, 9).
=0 m=—/ =0 m=—¢

(11)

» Fourier series on the sphere:

~

27 s
m 1/ £(6,9) Y;"(0,9) cost db do,
am 0 —m

and similarly for h.
» for g: SO(3) — C the Fourier transform is the collection of

matrices
1

Gf:4/ g(R) pe(R) dp(R) (=0,1,2,...,
T JS0O(3)

(12)
where p; are fixed matrix valued functions = irreducible
representations of SO(3) (Wigner D-matrices).
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Fourier space filters and cross-correlation (2)

» Important: Fourier transform of the convolution can be

expressed as of the corresponding fg and EZ
vectors:
[hxfly=f - b 0=0,1,2,...,L, (13)

» Here we used a convenient notation: h; as 2¢ + 1-dimensional
vector (similarly for any analogous quantities, e.g., f;)

» Analogously, for functions on SO(3) the resulting
cross-correlation formula is almost exactly the same:

[hxfle = Fo- H] 0=0,1,2,...,L, (14)

apart from the fact that now F, and H; are matrices
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Generalized spherical CNNs

» The central observation: under rotation of input data for a
layer

fo— pu(R) - . (15)
[h%fle v pe(R) - [hxFe. (16)

pe(R) = Wigner D-matrix

» Similarly, if f/,h": SO(3) — C, then W xf! (as defined in (14))
transforms the same way.

» Let A be an S+1 layer feed-forward neural network whose
input is a spherical function f%: 52 — C¢.

» We say that \ is a generalized SO(3)—covariant spherical
CNN if the output of each layer s can be expressed as a
collection of vectors

N ~ 5 o “~ ~
f —_— (f.071’ f.072’ ceey fb7T057 f171, f1,27 ey fl,Tf’ ......... PR fL7TZ)’
N——
=0 =1 l=L



Generalized spherical CNNs (2)

» here each fs € C**1 is a p,—covariant vector in the sense that
if the input |mage is rotated by some rotation R, then fs
transforms as

fr;i = p(R) - f7. (18)

» We call the individual fs vectors the irreducible fragments of
5, and the integer vector 7¢ = (7§,75,...,7]) counting the
number of fragments for each ¢ the type (multiplicity (7))of
fs.

» each individual ?j fragment is effecively a separate channel.

» any SO(3)-covariant spherical CNN is equivariant to rotations

» the terms “equivariant” and “covariant” map to the same
concept.

» In this work the term “equivariant” is used when one has the
same group acting on two objects in a way that is qualitively
similar (functions <> cross-correlation). The term “covariant”
is used if the actions are qualitively different (functions «+»
irreducible fragments).
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Generalized spherical CNNs (3)

» To fully define our neural network, one need to describe three
things:
1. The form of the linear transformations in each layer involving
learnable weights,
2. The form of the nonlinearity in each layer,
3. The way that the final output of the network can be reduced
to a vector that is rotation invariant — ultimate goal.
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Covariant linear transformations

> Let 7 be an SO(3)-covariant activation function of the form
(17), and g° = L(f*) be a linear function of * written in a
similar form.

» Then g° is SO(3)-covariant iff each g; . fragment is a linear
combination of fragments from f*° with the same /.

» |n other words, it should not entangle irreps with different 2.

> With the account of possible multiplicity:

G =FW; 0=0,1,2,...,L
(19)
» the Fourier space cross-correlation formulae (13) and (14) are
special cases of (19) corresponding to taking W, = hT or
W, =H.
» The case of general W, does not have such an intuitive
interpretation in terms of cross-correlation.
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Covariant nonlinearities: the Clebsch—Gordan transform

» The non-linearity in a real space does not destruct
equivariance because of its (non-linearity) point-wise nature
» If one performs the non-linear (namely, quadratic)
transformation in the Fourier space, the covariance is provided
by the decomposition of the resulting quantity into irreps:
> Let le and fgz be two py, resp. pg, covariant vectors, and ¢ be
any integer between |¢; — (5| and {1+ ¢5. Then

E@ = Cé—lr,éz,é I:le Y ffz] (20)

is a pg—covariant vector. Here C, 4, ¢ are the Clebsch—Gordan
coefficients
» With the account of possible multiplicities the expression
becomes a bit more complicated

-
Gp = Ll Gl (21)
[1—lo| <U<l1 4L

where LI denotes merging matrices horizontally.
» This is not important for us for now.
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Covariant nonlinearities: justification

» One potential drawback of Cohen’s et al. “Spherical CNNs” is
that the nonlinear transform in each layer still needs to be
computed in “real space”.

» = each layer of the network involves a forward and a
backward SO(3) Fourier transform,

» relatively costly
> is a source of numerical errors, especially since $? and SO(3)
do not admit any regular discretization

» here everything in the Fourier domain

» can it meaningful from the “real space” point of view?
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Covariant nonlinearities: justification (2)
» can it meaningful from the “real space” point of view? — it

seems YES

» S5.0.Ayat et al. “Spectral-based convolutional neural network
without multiple spatial-frequency domain switchings”
Neurocomputing 364 (2019) 152-167

» main idea: cl(f* ?) toft+a —

y(x)
15—+

Cl(f . f) + oof + 3

—— |deal RelLU

T | == SRelLU (0.021 X?+0.3 X+0)
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Final invariant layer

> After the S—1'th layer, the activations of the network will be
a series of matrices FS_1 FS ! each transforming under
rotations according to Fs 1, = pp (R) FS 1

» Ultimately, however, the objective of the network is to output

a vector that is invariant with respect rotations, i.e., a
collection of scalars.

» this simply corresponds to the fs fragments, since the /=0
representation is constant, and therefore the elements of Fy
are invariant.

» Thus, the final layer can be similar to the earlier ones,
except that it only needs to output this single (single
row) matrix.
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Summary of the algorithm

» The inputs to the network are n;, functions
flo,...,fn?n: S?2 5 C.
» E.g., for spherical color images, 2, £, £ = red, and blue

» The activation of layer s =0 is the union of the spherical
transforms up to some band limit (resolution) L:

1 s ™
[@]m:M/O /_fjo(ﬁ,qb)* Y/™(0, ) cos0dOdp.  (22)

> For layers s = 1,2,...,5—1, the Fourier space activation
fe=(F5,F,...,F})

Go,=FleF ™ 0<h<6hL<L (23)
» decomposing into py—covariant blocks by
[GZSI,Z2]E = Cg1,€2,€ GéshZZ’ (24)
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Summary of the algorithm (2)

> Al [G] ,,]¢ blocks with the same £ are concatenated into a
large matrix H} € CH)*T7  and this is multiplied by the

weight (learnable) matrix W} € C7i %™ to give
F;=H; W ¢=0,1,...,L (25)

» The operation of the final layer S is similar, except that the
output type is 7° = (Nout,0,0,....0), so components with £ > 0
do not need to be computed. By construction, the entries of

§ € Ct*nout are SO(3)—invariant scalars, i.e., they are
invariant to the simulatenous rotation of the 2, ..., f,gn
inputs.

» These scalars may be passed on to a fully connected network
or plugged directly into a loss function.
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Experiments: Rotated MNIST on the Sphere

» NR/NR = both the training and test sets were not rotated,;

» NR/R = the training set was not rotated while the test was

randomly rotated;

» R/R = both the training and test sets were rotated

Method NR/NR NR/R

R/R

Baseline CNN 97.67 22.18
Cohen et al. 95.59 94.62
Kondor et al. 96.4 96

» Other experiments:

» Atomization Energy Prediction
» 3D Shape Recognition

> — good performance

12
93.4
96.6
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