
Ýêâèâàðèàíòíîñòü êîíâîëþòèâíûõ íåéðîñåòåé
îòíîñèòåëüíî ãðóïï ïðåîáðàçîâàíèé âõîäíûõ

äàííûõ

A.Demichev

March 2021

Mainly based on:

I R. Kondor, et al. �On the generalization of equivariance and
convolution in neural networks to the action of compact
groups.� 2018. ArXiv: 1802.03690

I R. Kondor, et al. �Clebsch�Gordan nets:a fully Fourier space
spherical convolutional neural network.� 2018,ArXiv:
1806.09231
I there are tens of other work on this topic
I indicated above seems to be most appropriate for the general

introduction

2 / 36

Other works:

I T.S. Cohen, M.Geiger, J.K�ohler, M.Welling

I S.Ravanbakhsh

I A couple of reviews:
I C.Esteves �Theoretical aspects of group equivariant neural

networks�, arXiv:2004.05154
I L.D.Libera �Deep Learning for 2D and 3D Rotatable Data: An

Overview of Methods�, arXiv:1910.14594

3 / 36

Classical CNN

I nH � height; nW � width; nC � width

I f � �lter size

4 / 36

Classical CNN (2)

I ìû âñå ýòè ãèïåðïàðàìåòðû ðàññìàòðèâàòü íå áóäåì -
òîëüêî ñàìó êîíâîëþöèþ

I íî åùå (äëÿ ïðîñòîòû) îïóñòèì ñìåùåíèå

I ÿ íå âèäåë ðàáîò, ãäå òàêèå ãèïåðïàðàìåòðû
�âîññòàíîâëåíû� äëÿ ïðîèçâîëüíûõ ãðóïï

5 / 36

CNN in Overall

6 / 36

Main peculiarities/features of CNNs

I thanks to the convolution they are equivariant (covariant),
including the case of invariance;
I if the input image is translated by any vector (t1, t2) (i.e.,

f 0
′
(x1, x2) = f 0(x1 − t1, x2 − t2), then all higher layers will

translate in exactly the same way. This property is called
equivariance (sometimes covariance) to translations.

I thanks to the restricted support of the convolution kernel, they
are able to generalize details of images
I the same �lter is applied to every part of the image

I ⇒ if the networks learns to recognize a certain feature, e.g.,

eyes, in one part of the image, then it will be able to do so in

any other part as well

I The number of parameters in CNNs is much smaller than in
fully connected feed-forward networks, since we only have to
learn the w2 numbers de�ning the χ` �lters rather than
O((m2)2) weights

7 / 36

Multilayer feed-forward neural network (MFF-NN)
Let X0, . . . ,XL be a sequence of index sets, V0, . . . ,VL vector
spaces, φ1, . . . , φL linear maps

φ` : LV`−1
(X`−1) −→ LV`

(X`),

I LV (X)
def≡ the space of functions {f : X → V }

I σ` : V` → V`
def≡ appropriate pointwise nonlinearities, such

as the ReLU operator.

The corresponding multilayer feed-forward NN is then a
sequence of maps

f0 7→ f1 7→ f2 7→ . . . 7→ fL ,

where
f`(x) = σ`(φ`(f`−1)(x)). x ∈X`.

I �Flat� neuron indexing is not convenient for consideration of
transformations.

8 / 36

Equivariance

Let G be a group and X1,X2 be two sets with corresponding
G -actions

Tg : X1 → X1, T ′g : X2 → X2.

Let V1 and V2 be vector spaces, and T and T′ be the induced
actions of G on LV1(X1) and LV2(X2):

Tg : f 7→ f ′ f ′(x) = f (Tg−1(x)).

A (linear or non-linear) map φ : LV1(X1)→ LV2(X2) is
G -equivariant if ∀ g ∈G

φ(Tg (f)) = T′g (φ(f)) ∀f ∈ LV1(X1)

9 / 36

Equivariance (2)

I Equivariance is represented graphically by a so-called
commutative diagram, in this case

LV1(X1)
Tg //

φ

��

LV1(X1)

φ

��
LV2(X2)

T′g // LV2(X2)

I Any pointwise functions (non-linearity) are trivially equivariant
I Movements in X commute with pointwise transformation of a

function

10 / 36

Equivariant feed-forward network
I Let N be a feed-forward neural network (MFF-NN) and G be

a group that acts on each index space X0, . . . ,XL.
I Let T0,T1, . . . ,TL be the corresponding actions on

LV0(X0), . . . , LVL
(XL).

I We say that N is a G�equivariant feed-forward network if,
I when the inputs are transformed f0 7→ T0

g (f0) (for any g ∈G),
I the activations of the other layers correspondingly transform as

f` 7→ T`
g (f`).

I we have not said whether G and X0, . . . ,XL are discrete or
continuous.
I in certain cases, � when X0 ∼ sphere or other manifolds which

does not have a discretization that fully takes into account its
symmetries, it is easier to describe the situation in terms of
abstract �continuous� neural networks than seemingly simpler
discrete

I in any actual implementation of a neural network, the index
sets would of course be �nite.

I Note also that invariance is a special case of equivariance,
where Tg = id for all g .

11 / 36

Discretization of a sphere vs. �at spaces

I + Very limited number of discrete subgroups of SO(3)

12 / 36

Convolution on groups and quotient spaces

I convolution of two functions f , g : R→ R

(f ∗ g)(x) =
∫

f (x−y) g(y) dy . (1)

I convolution when f and g are functions on a compact
group G

(f ∗ g)(u) =
∫
G
f (uv−1) g(v) dµ(v). u, v ∈G . (2)

I For discrete groups the integrals are substituted by sums.

13 / 36

Cosets and quotient spaces
I The set of g ∈ G that map x0 7→ x is a so-called left coset

gH := {gh | h∈H }.
I The set of all such cosets forms the (left) quotient space

G/H.
I ⇒ X can be identi�ed with G/H.

I ∀ gH coset we may pick a coset representative g ′ ∈ gH, and
let x denote the representative of the coset of group elements
that map x0 to x .

14 / 36

Convolution on quotient spaces

I The major complication in neural networks is that X0, . . . ,XL

(spaces that the f0, . . . , fL activations are de�ned on) are
homogeneous spaces of G , rather than being G itself.

I Let G be a �nite or countable group, X and Y be (left or
right) quotient spaces of G , f : X → C, and g : Y → C.

I We then de�ne the convolution of f with g as

(f ∗ g)(u) =
∑
v∈G

f ↑G (uv−1) g↑G (v), u, v ∈G , . (3)

I given f : X → C, we de�ne the lifting
f ↑G (g) = f (g(x0)), x = g(x0) for some �origin� x0.
I roughly: f ↑G (g) is const on gH

I Thus in this case: f ∗ g : G → C. In general, this is not what
we are looking for.

15 / 36

Convolution on quotient spaces (2)

I We need that the convolution on quotient space maps
functions on one homogeneous (transitive, quotient) space
G/H to another also some homogeneous space G/K , i.e.
f 7→ f ∗ g is a map from functions on X = G/H to functions
on Y = H/K . The solution:

I If f : G/H→C, and g : H\G/K→C then we de�ne the
convolution of f with g as f ∗ g : G/K → C with

(f ∗ g)(x) = |H|
∑

y∈H\G

f ([xy−1]G/H) g([y]H\G/K). (4)

I x = x x0, y = y y0

I [x]G/H � projection from G to G/H

I All this looks very complicated. Fortunately, for speci�c
implementations, there are methods that simplify calculations.

16 / 36

Convolution on quotient spaces (3)

Most important:

I Dimensionality: e.g.
S2 = SO(3)/SO(2) → S2 = SO(3)/SO(2) ⇒ 1D-�lter

SO(2)\SO(3)/SO(2)

17 / 36

Main theorem (Risi Kondor & Shubhendu Trivedi)

I Let G be a compact group and N be an L+ 1 layer
feed-forward neural network
I in which the `'th index set is of the form X` = G/H`,
I where H` is some subgroup of G .

I Then N is equivariant to the action of G if and only if it is a
G -CNN.
I G -CNN: each of the linear maps φ1, . . . , φL in N is a

generalized convolution of the form

φ`(f`−1) = f`−1 ∗ χ`

with some �lter χ` ∈ LV`−1×V`
(H`−1\G/H`).

18 / 36

Convolution and Fourier analysis

I the Fourier transform of a function f on a (countable) group
is de�ned

f̂ (ρi) =
∑
u∈G

f (u)ρi (u), i = 0, 1, 2, . . . , (5)

I where ρ0, ρ1, . . . are matrix valued functions called irreducible
representations (irreps) of G .

I As expected, the generalization of this to the case when f is a
function on G/H, H\G or H\G/K is

f̂ (ρi) =
∑
u∈G

ρi (u) f ↑G (u), i = 1, 2,

I For details see, e.g. Í.ß. Âèëåíêèí �Ñïåöèàëüíûå ôóíêöèè è
òåîðèÿ ïðåäñòàâëåíèé ãðóïï�

19 / 36

Convolution theorem on groups

I Let G be a compact group, H and K subgroups of G , and f , g
be complex valued functions on G , G/H, H\G or H\G/K .

I In any combination of these cases,

f̂ ∗g(ρi) = f̂ (ρi) ĝ(ρi) (6)

for any given system of irreps RG = {ρ0, ρ1, . . .}.
I Thus for the Fourier transform the convolution becomes the

usual (matrix) multiplication.

I Now we can guess how to implement G -CNN if one starts
from continuous groups: just cut o� the Fourier transform
series at L-th term.

20 / 36

Fourier transformed G-CNN on the example of S2

I The simplest example of possible practical applications �
images from cameras on quadcopters

I but also it is possible that it can be applied in astrophysics (?)

I Based on the cited paper by Kondor et al.
I di�ers from the pioneering papers by Cohen et al. in a number

peculiarities, the main being non-linearities right in Fourier
transformed space

I Cohen et al. perform point-wise nonlinear mapping in real

space moving back and forth between real space and the
Fourier domain that comes at a signi�cant cost and leads to
a range of complications including numerical errors.

21 / 36

Convolutions on the sphere (1)

I On f s : Z2 → R, (with f 0 being the input image), the neurons
compute f s by taking the cross-correlation of the previous
layer's output with a small (learnable) �lter hs ,

(hs ? f s−1)(x) =
∑
y

hs(y−x) f s−1(y), (7)

and then applying a nonlinearity σ, such as the Re-LU
operator:

f s(x) = σ((hs ? f s−1)(x)). (8)

I cross-correlation di�ers from the convolution by the order of
arguments and despite their name, that is what CNNs actually
compute.

22 / 36

Convolutions on the sphere (2)

I On S2 cross-correlations h? f is de�ned as a function on the

rotation group itself, i.e.,

(h?f)(R) =
1

4π

∫ 2π

0

∫ π

−π

[
hR(θ, φ)

]∗
f (θ, φ) cos θ dθ dφ R ∈ SO(3),

(9)
where hR is h rotated by R , expressible as

hR(x) = h(R−1x), (10)

with x being the point on the sphere at position (θ, φ)

I General result by Kondor-Trivedi: if h, g : G/H → R,
(h ? f) : G → R

23 / 36

Fourier space �lters and cross-correlation
I spherical harmonic expansions

f (θ, φ) =
∞∑
`=0

∑̀
m=−`

f̂ m` Ym
` (θ, φ); h(θ, φ) =

∞∑
`=0

∑̀
m=−`

ĥm` Y
m
` (θ, φ).

(11)
I Fourier series on the sphere:

f̂ m` =
1

4π

∫ 2π

0

∫ π

−π
f (θ, φ)Ym

` (θ, φ) cos θ dθ dφ,

and similarly for h.
I for g : SO(3)→ C the Fourier transform is the collection of

matrices

G` =
1

4π

∫
SO(3)

g(R) ρ`(R)dµ(R) ` = 0, 1, 2, . . . ,

(12)
where ρ` are �xed matrix valued functions = irreducible
representations of SO(3) (Wigner D-matrices).

24 / 36

Fourier space �lters and cross-correlation (2)

I Important: Fourier transform of the convolution can be
expressed as the outer product of the corresponding f̂` and ĥ†`
vectors:

[ĥ ? f]` = f̂` · ĥ†` ` = 0, 1, 2, . . . , L, (13)

I Here we used a convenient notation: h` as 2`+ 1-dimensional
vector (similarly for any analogous quantities, e.g., f`)

I Analogously, for functions on SO(3) the resulting
cross-correlation formula is almost exactly the same:

[ĥ? f]` = F` · H†` ` = 0, 1, 2, . . . , L, (14)

apart from the fact that now F` and H` are matrices

25 / 36

Generalized spherical CNNs
I The central observation: under rotation of input data for a

layer
f̂` 7→ ρ`(R) · f̂`. (15)

[ĥ? f]` 7→ ρ`(R) · [ĥ? f]`. (16)

ρ`(R) = Wigner D-matrix
I Similarly, if f ′, h′ : SO(3)→ C, then ĥ′ ? f ′ (as de�ned in (14))

transforms the same way.
I Let N be an S+1 layer feed-forward neural network whose

input is a spherical function f 0 : S2 → Cd .
I We say that N is a generalized SO(3)�covariant spherical

CNN if the output of each layer s can be expressed as a
collection of vectors

f̂ s = (f̂ s0,1, f̂
s
0,2, . . . , f̂

s
0,τ s0︸ ︷︷ ︸

`=0

, f̂ s1,1, f̂
s
1,2, . . . , f̂

s
1,τ s1︸ ︷︷ ︸

`=1

, , . . . f̂ sL,τ sL︸ ︷︷ ︸
`=L

),

(17)

26 / 36

Generalized spherical CNNs (2)

I here each f̂ s`,j ∈C2`+1 is a ρ`�covariant vector in the sense that
if the input image is rotated by some rotation R , then f̂ s`,j
transforms as

f̂ s`,j 7→ ρ(R) · f̂ s`,j . (18)

I We call the individual f̂ s`,j vectors the irreducible fragments of
f̂ s , and the integer vector τ s = (τ s0 , τ

s
1 , . . . , τ

s
L) counting the

number of fragments for each ` the type (multiplicity (?))of
f̂ s .
I each individual f̂ s` fragment is e�ecively a separate channel.

I any SO(3)�covariant spherical CNN is equivariant to rotations
I the terms �equivariant� and �covariant� map to the same

concept.
I In this work the term �equivariant� is used when one has the

same group acting on two objects in a way that is qualitively
similar (functions ↔ cross-correlation). The term �covariant�

is used if the actions are qualitively di�erent (functions ↔
irreducible fragments).

27 / 36

Generalized spherical CNNs (3)

I To fully de�ne our neural network, one need to describe three
things:

1. The form of the linear transformations in each layer involving
learnable weights,

2. The form of the nonlinearity in each layer,
3. The way that the �nal output of the network can be reduced

to a vector that is rotation invariant → ultimate goal.

28 / 36

Covariant linear transformations

I Let f̂ s be an SO(3)�covariant activation function of the form
(17), and ĝ s = L(f̂ s) be a linear function of f̂ s written in a
similar form.

I Then ĝ s is SO(3)�covariant i� each ĝ s
`,j fragment is a linear

combination of fragments from f̂ s with the same `.
I In other words, it should not entangle irreps with di�erent `.

I With the account of possible multiplicity:

G s
` = F s

` W
s
` ` = 0, 1, 2, . . . , L

(19)

I the Fourier space cross-correlation formulae (13) and (14) are

special cases of (19) corresponding to taking W`= ĥ†` or

W`=H†` .

I The case of general W` does not have such an intuitive
interpretation in terms of cross-correlation.

29 / 36

Covariant nonlinearities: the Clebsch�Gordan transform
I The non-linearity in a real space does not destruct

equivariance because of its (non-linearity) point-wise nature
I If one performs the non-linear (namely, quadratic)

transformation in the Fourier space, the covariance is provided
by the decomposition of the resulting quantity into irreps:
I Let f̂`1 and f̂`2 be two ρ`1 resp. ρ`2 covariant vectors, and ` be

any integer between |`1−`2| and `1+`2. Then

ĝ` = C>`1,`2,`
[
f̂`1 ⊗ f̂`2

]
(20)

is a ρ`�covariant vector. Here C`1,`2,` are the Clebsch�Gordan

coe�cients

I With the account of possible multiplicities the expression
becomes a bit more complicated

G s
` =

⊔
|`1−̀ 2|≤`≤`1+`2

C>`1,`2,`
[
F s
`1 ⊗ F s

`2

]
, (21)

where t denotes merging matrices horizontally.
I This is not important for us for now.

30 / 36

Covariant nonlinearities: justi�cation

I One potential drawback of Cohen's et al. �Spherical CNNs� is
that the nonlinear transform in each layer still needs to be
computed in �real space�.

I ⇒ each layer of the network involves a forward and a
backward SO(3) Fourier transform,
I relatively costly
I is a source of numerical errors, especially since S2 and SO(3)

do not admit any regular discretization

I here everything in the Fourier domain

I can it meaningful from the �real space� point of view?

31 / 36

Covariant nonlinearities: justi�cation (2)
I can it meaningful from the �real space� point of view? → it

seems YES
I S.O.Ayat et al. �Spectral-based convolutional neural network

without multiple spatial-frequency domain switchings�
Neurocomputing 364 (2019) 152�167

I main idea: c1(f̂ ? f̂) + c2f̂ + c3 → c1(f · f) + c2f + c3

32 / 36

Final invariant layer

I After the S−1'th layer, the activations of the network will be
a series of matrices F S−1

0 , . . . ,F S−1
L , each transforming under

rotations according to F S−1
` 7→ ρ`(R)F

S−1
` .

I Ultimately, however, the objective of the network is to output
a vector that is invariant with respect rotations, i.e., a
collection of scalars.
I this simply corresponds to the f̂ S0,j fragments, since the `=0

representation is constant, and therefore the elements of F S
0

are invariant.

I Thus, the �nal layer can be similar to the earlier ones,
except that it only needs to output this single (single
row) matrix.

33 / 36

Summary of the algorithm

I The inputs to the network are nin functions
f 01 , . . . , f

0
nin

: S2 → C.
I E.g., for spherical color images, f 01 , f

0
2 , f

0
3 = red, green and blue

I The activation of layer s =0 is the union of the spherical
transforms up to some band limit (resolution) L:

[f̂ 0`,j]m =
1

4π

∫ 2π

0

∫ π

−π
f 0j (θ, φ)

∗ Ym
` (θ, φ) cos θdθdφ. (22)

I For layers s = 1, 2, . . . ,S−1, the Fourier space activation
f̂ s = (F s

0 ,F
s
1 , . . . ,F

s
L)

G s
`1,`2 = F s−1

`1
⊗ F s−1

`2
0 ≤ `1 ≤ `2 ≤ L. (23)

I decomposing into ρ`�covariant blocks by

[G s
`1,`2]` = C †`1,`2,` G

s
`1,`2 , (24)

34 / 36

Summary of the algorithm (2)

I All [G s
`1,`2

]` blocks with the same ` are concatenated into a
large matrix Hs

` ∈C(2 +̀1)×τ s` , and this is multiplied by the

weight (learnable) matrix W s
` ∈Cτ

s
`×τ

s
` to give

F s
` = Hs

` W
s
` ` = 0, 1, . . . , L. (25)

I The operation of the �nal layer S is similar, except that the
output type is τS = (nout,0,0,...,0), so components with ` > 0
do not need to be computed. By construction, the entries of
F s
0 ∈C1×nout are SO(3)�invariant scalars, i.e., they are

invariant to the simulatenous rotation of the f 01 , . . . , f
0
nin

inputs.

I These scalars may be passed on to a fully connected network
or plugged directly into a loss function.

35 / 36

Experiments: Rotated MNIST on the Sphere

I NR/NR = both the training and test sets were not rotated;

I NR/R = the training set was not rotated while the test was
randomly rotated;

I R/R = both the training and test sets were rotated

Method NR/NR NR/R R/R

Baseline CNN 97.67 22.18 12
Cohen et al. 95.59 94.62 93.4
Kondor et al. 96.4 96 96.6

I Other experiments:
I Atomization Energy Prediction
I 3D Shape Recognition

I → good performance

36 / 36

