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Abstract
We present SR3, an approach to image Super-Resolution

via Repeated Refinement. SR3 adapts denoising diffusion
probabilistic models [17, 48] to conditional image gener-
ation and performs super-resolution through a stochastic
iterative denoising process. Output generation starts with
pure Gaussian noise and iteratively refines the noisy output
using a U-Net model trained on denoising at various noise
levels. SR3 exhibits strong performance on super-resolution
tasks at different magnification factors, on faces and natu-
ral images. We conduct human evaluation on a standard
8× face super-resolution task on CelebA-HQ, comparing
with SOTA GAN methods. SR3 achieves a fool rate close
to 50%, suggesting photo-realistic outputs, while GANs do
not exceed a fool rate of 34%. We further show the effec-
tiveness of SR3 in cascaded image generation, where gen-
erative models are chained with super-resolution models,
yielding a competitive FID score of 11.3 on ImageNet.

1. Introduction
Single-image super-resolution is the process of generat-

ing a high-resolution image that is consistent with an in-
put low-resolution image. It falls under the broad family
of image-to-image translation tasks, including colorization,
in-painting, and de-blurring. Like many such inverse prob-
lems, image super-resolution is challenging because multi-
ple output images may be consistent with a single input im-
age, and the conditional distribution of output images given
the input typically does not conform well to simple para-
metric distributions, e.g., a multivariate Gaussian. Accord-
ingly, while simple regression-based methods with feedfor-
ward convolutional nets may work for super-resolution at
low magnification ratios, they often lack the high-fidelity
details needed for high magnification ratios.

Deep generative models have seen success in learning
complex empirical distributions of images (e.g., [52, 57]).
Autoregressive models [31, 32], variational autoencoders
(VAEs) [24, 54], Normalizing Flows (NFs) [10, 23], and
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Figure 1: Two representative SR3 outputs: (top) 8× face super-
resolution at 16×16→128×128 pixels (bottom) 4× natural image
super-resolution at 64×64→256×256 pixels.

GANs [14, 19, 36] have shown convincing image genera-
tion results and have been applied to conditional tasks such
as image super-resolution [7, 8, 25, 28, 33]. However, these
approaches often suffer from various limitations; e.g., au-
toregressive models are prohibitively expensive for high-
resolution image generation, NFs and VAEs often yield
sub-optimal sample quality, and GANs require carefully de-
signed regularization and optimization tricks to tame opti-
mization instability [2, 15] and mode collapse [29, 38].

We propose SR3 (Super-Resolution via Repeated Re-
finement), a new approach to conditional image generation,
inspired by recent work on Denoising Diffusion Probabilis-
tic Models (DDPM) [17, 47], and denoising score match-
ing [17, 49]. SR3 works by learning to transform a stan-
dard normal distribution into an empirical data distribu-
tion through a sequence of refinement steps, resembling
Langevin dynamics. The key is a U-Net architecture [42]
that is trained with a denoising objective to iteratively re-
move various levels of noise from the output. We adapt
DDPMs to conditional image generation by proposing a
simple and effective modification to the U-Net architecture.
In contrast to GANs that require inner-loop maximization,
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we minimize a well-defined loss function. Unlike autore-
gressive models, SR3 uses a constant number of inference
steps regardless of output resolution.

SR3 works well across a range of magnification factors
and input resolutions. SR3 models can also be cascaded,
e.g., going from 64×64 to 256×256, and then to 1024×1024.
Cascading models allows one to independently train a few
small models rather than a single large model with a high
magnification factor. We find that chained models enable
more efficient inference, since directly generating a high-
resolution image requires more iterative refinement steps
for the same quality. We also find that one can chain an un-
conditional generative model with SR3 models to uncondi-
tionally generate high-fidelity images. Unlike existing work
that focuses on specific domains (e.g., faces), we show that
SR3 is effective on both faces and natural images.

Automated image quality scores like PSNR and SSIM
do not reflect human preference well when the input reso-
lution is low and the magnification ratio is large (e.g., [3,
7, 8, 28]). These quality scores often penalize synthetic
high-frequency details, such as hair texture, because syn-
thetic details do not perfectly align with the reference de-
tails. We resort to human evaluation to compare the qual-
ity of super-resolution methods. We adopt a 2-alternative
forced-choice (2AFC) paradigm in which human subjects
are shown a low-resolution input and are required to select
between a model output and a ground truth image (cf. [63]).
Based on this study, we calculate fool rate scores that cap-
ture both image quality and the consistency of model out-
puts with low-resolution inputs. Experiments demonstrate
that SR3 achieves a significantly higher fool rate than SOTA
GAN methods [7, 28] and a strong regression baseline.
Our key contributions are summarized as:
• We adapt denoising diffusion models to conditional im-

age generation. Our method, SR3, is an approach to im-
age super-resolution via iterative refinement.

• SR3 proves effective on face and natural image super-
resolution at different magnification factors. On a stan-
dard 8× face super-resolution task, SR3 achieves a hu-
man fool rate close to 50%, outperforming FSRGAN [7]
and PULSE [28] that achieve fool rates of at most 34%.

• We demonstrate unconditional and class-conditional gen-
eration by cascading a 64×64 image synthesis model with
SR3 models to progressively generate 1024×1024 uncon-
ditional faces in 3 stages, and 256×256 class-conditional
ImageNet samples in 2 stages. Our class conditional Im-
ageNet samples attain competitive FID scores.

2. Conditional Denoising Diffusion Model
We are given a dataset of input-output image pairs, de-

noted D = {xi,yi}Ni=1, which represent samples drawn
from an unknown conditional distribution p(y |x). This is
a one-to-many mapping in which many target images may

y0∼p(y |x) yt−1 yt yT ∼N (0, I)

q(yt|yt−1)

pθ(yt−1|yt,x)

Figure 2: The forward diffusion process q (left to right) gradually
adds Gaussian noise to the target image. The reverse inference
process p (right to left) iteratively denoises the target image con-
ditioned on a source image x. Source image x is not shown here.

be consistent with a single source image. We are interested
in learning a parametric approximation to p(y |x) through
a stochastic iterative refinement process that maps a source
image x to a target image y ∈ Rd. We approach this
problem by adapting the denoising diffusion probabilistic
(DDPM) model of [17, 47] to conditional image generation.

The conditional DDPM model generates a target im-
age y0 in T refinement steps. Starting with a pure noise
image yT ∼ N (0, I), the model iteratively refines the
image through successive iterations (yT−1,yT−2, . . . ,y0)
according to learned conditional transition distributions
pθ(yt−1 |yt,x) such that y0 ∼ p(y |x) (see Figure 2).

The distributions of intermediate images in the inference
chain are defined in terms of a forward diffusion process
that gradually adds Gaussian noise to the signal via a fixed
Markov chain, denoted q(yt |yt−1). The goal of our model
is to reverse the Gaussian diffusion process by iteratively re-
covering signal from noise through a reverse Markov chain
conditioned on x. In principle, each forward process step
can be conditioned on x too, but we leave that to future
work. We learn the reverse chain using a neural denoising
model fθ that takes as input a source image and a noisy tar-
get image and estimates the noise. We first give an overview
of the forward diffusion process, and then discuss how our
denoising model fθ is trained and used for inference.

2.1. Gaussian Diffusion Process

Following [17, 47], we first define a forward Markovian
diffusion process q that gradually adds Gaussian noise to a
high-resolution image y0 over T iterations:

q(y1:T | y0) =
∏T

t=1
q(yt | yt−1) , (1)

q(yt | yt−1) = N (yt |
√
αt yt−1, (1− αt)I) , (2)

where the scalar parameters α1:T are hyper-parameters,
subject to 0 < αt < 1, which determine the variance of the
noise added at each iteration. Note that yt−1 is attenuated
by
√
αt to ensure that the variance of the random variables

remains bounded as t→∞. For instance, if the variance of
yt−1 is 1, then the variance of yt is also 1.

Importantly, one can characterize the distribution of yt
given y0 by marginalizing out the intermediate steps as

q(yt | y0) = N (yt |
√
γt y0, (1− γt)I) , (3)



Algorithm 1 Training a denoising model fθ
1: repeat
2: (x,y0) ∼ p(x,y)
3: γ ∼ p(γ)
4: ε ∼ N (0, I)
5: Take a gradient descent step on

∇θ
∥∥fθ(x,√γy0 +√1− γε, γ)− ε∥∥pp

6: until converged

where γt =
∏t
i=1 αi. Furthermore, with some algebraic

manipulation and completing the square, one can derive the
posterior distribution of yt−1 given (y0,yt) as

q(yt−1 | y0,yt) = N (yt−1 | µ, σ2I)

µ =

√
γt−1 (1− αt)

1− γt
y0+

√
αt (1− γt−1)

1− γt
yt

σ2 =
(1− γt−1)(1− αt)

1− γt
.

(4)

This posterior distribution is helpful when parameterizing
the reverse chain and formulating a variational lower bound
on the log-likelihood of the reverse chain. We next discuss
how one can learn a neural network to reverse this Gaussian
diffusion process.

2.2. Optimizing the Denoising Model

To help reverse the diffusion process, we take advantage
of additional side information in the form of a source image
x and optimize a neural denoising model fθ that takes as
input this source image x and a noisy target image ỹ,

ỹ =
√
γ y0 +

√
1− γ ε , ε ∼ N (0, I) , (5)

and aims to recover the noiseless target image y0. This
definition of a noisy target image ỹ is compatible with the
marginal distribution of noisy images at different steps of
the forward diffusion process in (3).

In addition to a source image x and a noisy target im-
age ỹ, the denoising model fθ(x, ỹ, γ) takes as input the
sufficient statistics for the variance of the noise γ, and is
trained to predict the noise vector ε. We make the denois-
ing model aware of the level of noise through conditioning
on a scalar γ, similar to [49, 6]. The proposed objective
function for training fθ is

E(x,y)Eε,γ
∥∥∥∥fθ(x,√γ y0 +√1− γ ε︸ ︷︷ ︸

ỹ

, γ)− ε
∥∥∥∥p
p

, (6)

where ε ∼ N (0, I), (x,y) is sampled from the training
dataset, p ∈ {1, 2}, and γ ∼ p(γ). The distribution of γ has
a big impact on the quality of the model and the generated
outputs. We discuss our choice of p(γ) in Section 2.4.

Instead of regressing the output of fθ to ε, as in (6), one
can also regress the output of fθ to y0. Given γ and ỹ, the

Algorithm 2 Inference in T iterative refinement steps

1: yT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: yt−1 = 1√
αt

(
yt − 1−αt√

1−γt
fθ(x,yt, γt)

)
+
√
1− αtz

5: end for
6: return y0

values of ε and y0 can be derived from each other determin-
istically, but changing the regression target has an impact on
the scale of the loss function. We expect both of these vari-
ants to work reasonably well if p(γ) is modified to account
for the scale of the loss function. Further investigation of
the loss function used for training the denoising model is an
interesting avenue for future research in this area.

2.3. Inference via Iterative Refinement

Inference under our model is defined as a reverse Marko-
vian process, which goes in the reverse direction of the for-
ward diffusion process, starting from Gaussian noise yT :

pθ(y0:T |x) = p(yT )
∏T

t=1
pθ(yt−1|yt,x) (7)

p(yT ) = N (yT | 0, I) (8)
pθ(yt−1|yt,x) = N (yt−1 | µθ(x,yt, γt), σ2

t I) . (9)

We define the inference process in terms of isotropic Gaus-
sian conditional distributions, pθ(yt−1|yt,x), which are
learned. If the noise variance of the forward process steps
are set as small as possible, i.e., α1:T ≈ 1, the optimal re-
verse process p(yt−1|yt,x) will be approximately Gaus-
sian [47]. Accordingly, our choice of Gaussian conditionals
in the inference process (9) can provide a reasonable fit to
the true reverse process. Meanwhile, 1−γT should be large
enough so that yT is approximately distributed according
to the prior p(yT ) = N (yT |0, I), allowing the sampling
process to start at pure Gaussian noise.

Recall that the denoising model fθ is trained to estimate
ε, given any noisy image ỹ including yt. Thus, given yt,
we approximate y0 by rearranging the terms in (5) as

ŷ0 =
1
√
γt

(
yt −

√
1− γt fθ(x,yt, γt)

)
. (10)

Following the formulation of [17], we substitute our esti-
mate ŷ0 into the posterior distribution of q(yt−1|y0,yt) in
(4) to parameterize the mean of pθ(yt−1|yt,x) as

µθ(x,yt, γt) =
1
√
αt

(
yt −

1− αt√
1− γt

fθ(x,yt, γt)

)
,

(11)
and we set the variance of pθ(yt−1|yt,x) to (1 − αt), a
default given by the variance of the forward process [17].



Following this parameterization, each iteration of itera-
tive refinement under our model takes the form,

yt−1 ←
1
√
αt

(
yt −

1− αt√
1− γt

fθ(x,yt, γt)

)
+
√
1− αtεt ,

where εt ∼ N (0, I). This resembles one step of Langevin
dynamics with fθ providing an estimate of the gradient of
the data log-density. We justify the choice of the training
objective in (6) for the probabilistic model outlined in (9)
from a variational lower bound perspective and a denoising
score-matching perspective in Appendix B.

2.4. SR3 Model Architecture and Noise Schedule

The SR3 architecture is similar to the U-Net found in
DDPM [17], with modifications adapted from [51]; we
replace the original DDPM residual blocks with residual
blocks from BigGAN [4], and we re-scale skip connections
by 1√

2
. We also increase the number of residual blocks,

and the channel multipliers at different resolutions (see Ap-
pendix A for details). To condition the model on the in-
put x, we up-sample the low-resolution image to the target
resolution using bicubic interpolation. The result is con-
catenated with yt along the channel dimension. We exper-
imented with more sophisticated methods of conditioning,
such as using FiLM [34], but we found that the simple con-
catenation yielded similar generation quality.

For our training noise schedule, we follow [6], and use a
piece wise distribution for γ, p(γ) =

∑T
t=1

1
T U(γt−1, γt).

Specifically, during training, we first uniformly sample
a time step t ∼ {0, ..., T} followed by sampling γ ∼
U(γt−1, γt). We set T = 2000 in all our experiments.

Prior work of diffusion models [17, 51] require 1-2k dif-
fusion steps during inference, making generation slow for
large target resolution tasks. We adapt techniques from [6]
to enable more efficient inference. Our model conditions
on γ directly (vs t as in [17]), which allows us flexibility in
choosing number of diffusion steps, and the noise schedule
during inference. This has been demonstrated to work well
for speech synthesis [6], but has not been explored for im-
ages. For efficient inference we set the maximum inference
budget to 100 diffusion steps, and hyper-parameter search
over the inference noise schedule. This search is inexpen-
sive as we only need to train the model once [6]. We use
FID on held out data to choose the best noise schedule, as
we found PSNR did not correlate well with image quality.

3. Related Work
SR3 is inspired by recent work on deep generative models
and recent learning-based approaches to super-resolution.
Generative Models. Autoregressive models (ARs) [55, 45]
can model exact data log likelihood, capturing rich dis-
tributions. However, their sequential generation of pix-

els is expensive, limiting application to low-resolution im-
ages. Normalizing flows [40, 10, 23] improve on sampling
speed while modelling the exact data likelihood, but the
need for invertible parameterized transformations with a
tractable Jacobian determinant limits their expressiveness.
VAEs [24, 41] offer fast sampling, but tend to underper-
form GANs and ARs in image quality [54]. Generative
Adversarial Networks (GANs) [14] are popular for class
conditional image generation and super-resolution. Nev-
ertheless, the inner-outer loop optimization often requires
tricks to stabilize training [2, 15], and conditional tasks like
super-resolution usually require an auxiliary consistency-
based loss to avoid mode collapse [25]. Cascades of GAN
models have been used to generate higher resolution images
[9].

Score matching [18] models the gradient of the data log-
density with respect to the image. Score matching on noisy
data, called denoising score matching [58], is equivalent
to training a denoising autoencoder, and to DDPMs [17].
Denoising score matching over multiple noise scales with
Langevin dynamics sampling from the learned score func-
tions has recently been shown to be effective for high qual-
ity unconditional image generation [49, 17]. These models
have also been generalized to continuous time [51]. Denois-
ing score matching and diffusion models have also found
success in shape generation [5], and speech synthesis [6].
We extend this method to super-resolution, with a simple
learning objective, a constant number of inference genera-
tion steps, and high quality generation.

Super-Resolution. Numerous super-resolution methods
have been proposed in the computer vision community
[11, 1, 22, 53, 25, 44]. Much of the early work on super-
resolution is regression based and trained with an MSE loss
[11, 1, 60, 12, 21]. As such, they effectively estimate the
posterior mean, yielding blurry images when the posterior
is multi-modal [25, 44, 28]. Our regression baseline defined
below is also a one-step regression model trained with MSE
(cf. [1, 21]), but with a large U-Net architecture. SR3, by
comparison, relies on a series of iterative refinement steps,
each of which is trained with a regression loss. This differ-
ence permits our iterative approach to capture richer distri-
butions. Further, rather than estimating the posterior mean,
SR3 generates samples from the target posterior.

Autoregressive models have been used successfully for
super-resolution and cascaded up-sampling [8, 27, 56, 33].
Nevertheless, the expensive of inference limits their appli-
cability to low-resolution images. SR3 can generate high-
resolution images, e.g., 1024×1024, but with a constant
number of refinement steps (often no more than 100).

Normalizing flows have been used for super-resolution
with a multi-scale approach [62]. They are capable of gen-
erating 1024×1024 images due in part to their efficient in-
ference process. But SR3 uses a series of reverse diffusion



Bicubic Regression SR3 (ours) Reference

Figure 3: Results of a SR3 model (64×64→ 256×256), trained on ImageNet and evaluated on two ImageNet test images. For each we
also show an enlarged patch in which finer details are more apparent. Additional samples are shown in Appendix C.3 and C.4.

steps to transform a Gaussian distribution to an image dis-
tribution while flows require a deep and invertible network.

GAN-based super-resolution methods have also found
considerable success [19, 25, 28, 61, 44]. FSRGAN [7] and
PULSE [28] in particular have demonstrated high quality
face super-resolution results. However, many such GAN
based methods are generally difficult to optimize, and often
require auxiliary objective functions to ensure consistency
with the low resolution inputs.

4. Experiments
We assess the effectiveness of SR3 models in super-

resolution on faces, natural images, and synthetic images
obtained from a low-resolution generative model. The latter
enables high-resolution image synthesis using model cas-
cades. We compare SR3 with recent methods such as FSR-
GAN [7] and PULSE [28] using human evaluation1, and re-
port FID for various tasks. We also compare to a regression

1Samples generously provided by the authors of [28]

baseline model that shares the same architecture as SR3, but
is trained with a MSE loss. Our experiments include:
• Face super-resolution at 16×16→128×128 and 64×64→
512×1512 trained on FFHQ and evaluated on CelebA-
HQ.

• Natural image super-resolution at 64×64 → 256×256
pixels on ImageNet [43].

• Unconditional 1024×1024 face generation by a cascade
of 3 models, and class-conditional 256×256 ImageNet
image generation by a cascade of 2 models.

Datasets: We follow previous work [28], training face
super-resolution models on Flickr-Faces-HQ (FFHQ) [20]
and evaluating on CelebA-HQ [19]. For natural image
super-resolution, we train on ImageNet 1K [43] and use
the dev split for evaluation. We train unconditional face
and class-conditional ImageNet generative models using
DDPM on the same datasets discussed above. For training
and testing, we use low-resolution images that are down-
sampled using bicubic interpolation with anti-aliasing en-



Bicubic Regression SR3 (ours) Reference

Figure 4: Results of a SR3 model (64×64→ 512×512), trained on FFHQ, and applied to images outside of the training set, along with
enlarged patches to show finer details. Additional results are shown in Appendix C.1 and C.2.

abled. For ImageNet, we discard images where the shorter
side is less than the target resolution. We use the largest
central crop like [4], which is then resized to the target res-
olution using area resampling as our high resolution image.

Training Details: We train all of our SR3 and regression
models for 1M training steps with a batch size of 256. We
choose a checkpoint for the regression baseline based on
peak-PSNR on the held out set. We do not perform any
checkpoint selection on SR3 models and simply select the
latest checkpoint. Consistent with [17], we use the Adam
optimizer with a linear warmup schedule over 10k train-
ing steps, followed by a fixed learning rate of 1e-4 for SR3
models and 1e-5 for regression models. We use 625M pa-
rameters for our 64×64 → {256×256, 512×512} mod-
els, 550M parameters for the 16×16 → 128×128 models,
and 150M parameters for 256×256→ 1024×1024 model.
We use a dropout rate of 0.2 for 16×16→ 128×128 mod-
els super-resolution, but otherwise, we do not use dropout.

(See Appendix A for task specific architectural details.)

4.1. Qualitative Results

Natural Images: Figure 3 gives examples of super-
resolution natural images for 64×64 → 256×256 on the
ImageNet dev set, along with enlarged patches for finer in-
spection. The baseline Regression model generates images
that are faithful to the inputs, but are blurry and lack detail.
By comparison, SR3 produces sharp images with more de-
tail; this is most evident in the enlarged patches. For more
samples see Appendix C.3 and C.4.

Face Images: Figure 4 shows outputs of a face super-
resolution model (64×64→ 512×512) on two test images,
again with selected patches enlarged. With the 8× magni-
fication factor one can clearly see the detailed structure in-
ferred. Note that, because of the large magnification factor,
there are many plausible outputs, so we do not expect the
output to exactly match the reference image. This is evident



in the regions highlighted in the faces. For more samples
see Appendix C.1 and C.2.

4.2. Benchmark Comparison

4.2.1 Automated metrics

Table 1 shows the PSNR, SSIM [59] and Consistency
scores for 16×16 → 128×128 face super-resolution. SR3
outperforms PULSE and FSRGAN on PSNR and SSIM
while underperforming the regression baseline. Previous
work [7, 8, 28] observed that these conventional automated
evaluation measures do not correlate well with human per-
ception when the input resolution is low and the magnifi-
cation factor is large. This is not surprising because these
metrics tend to penalize any synthetic high-frequency de-
tail that is not perfectly aligned with the target image. Since
generating perfectly aligned high-frequency details, e.g., the
exact same hair strands in Figure 4 and identical leopard
spots in Figure 3, is almost impossible, PSNR and SSIM
tend to prefer MSE regression-based techniques that are ex-
tremely conservative with high-frequency details. This is
further confirmed in Table 2 for ImageNet super-resolution
(64×64 → 256×256) where the outputs of SR3 achieve
higher sample quality scores (FID and IS), but worse PSNR
and SSIM than regression.

Consistency: As a measure of the consistentcy of the super-
resolution outputs, we compute MSE between the down-
sampled outputs and the low resolution inputs. Table 1
shows that SR3 achieves the best consistency error beating
PULSE and FSRGAN by a significant margin slightly out-
performing even the regression baseline. This result demon-
strates the key advantage of SR3 over state of the art GAN
based methods as they do not require any auxiliary objec-
tive function in order to ensure consistency with the low
resolution inputs.

Classification Accuracy: Table 3 compares our 4× nat-
ural image super-resolution models with previous work in
terms of object classification on low-resolution images. We
mirror the evaluation setup of [44, 64] and apply 4× super-
resolution models to 56×56 center crops from the valida-
tion set of ImageNet. Then, we report classification er-
ror based on a pre-trained ResNet-50 [16]. Since, our
super-resolution models are trained on the task of 64×64
→ 256×256, we use bicubic interpolation to resize the in-
put 56×56 to 64×64, then we apply 4× super-resolution,
followed by resizing back to 224×224. SR3 outperforms
existing methods by a large margin on top-1 and top-5 clas-
sification errors, demonstrating high perceptual quality of
SR3 outputs. The Regression model achieves strong per-
formance compared to existing methods demonstrating the
strength of our baseline model. However, SR3 significantly
outperforms Regression re-affirming the limitation of con-
ventional metrics such as PSNR and SSIM.

Metric PULSE [28] FSRGAN [7] Regression SR3

PSNR ↑ 16.88 23.01 23.96 23.04
SSIM ↑ 0.44 0.62 0.69 0.65

Consistency ↓ 161.1 33.8 2.71 2.68

Table 1: PSNR & SSIM on 16×16 → 128×128 face super-
resolution. Consistency measures MSE (×10−5) between the low-
resolution inputs and the down-sampled super-resolution outputs.

Model FID ↓ IS ↑ PSNR ↑ SSIM ↑

Reference 1.9 240.8 - -

Regression 15.2 121.1 27.9 0.801
SR3 5.2 180.1 26.4 0.762

Table 2: Performance comparison between SR3 and Regression
baseline on natural image super-resolution using standard metrics
computed on the ImageNet validation set.

Method Top-1 Error Top-5 Error

Baseline 0.252 0.080

DRCN [22] 0.477 0.242
FSRCNN [13] 0.437 0.196
PsyCo [35] 0.454 0.224
ENet-E [44] 0.449 0.214
RCAN [64] 0.393 0.167

Regression 0.383 0.173
SR3 0.317 0.120

Table 3: Comparison of classification accuracy scores for 4× nat-
ural image super-resolution on the first 1K images from the Ima-
geNet Validation set.

4.2.2 Human Evaluation (2AFC)

In this work, we are primarily interested in photo-realistic
super-resolution with large magnification factors. Accord-
ingly, we resort to direct human evaluation. While mean
opinion score (MOS) is commonly used to measure im-
age quality in this context, forced choice pairwise compar-
ison has been found to be a more reliable method for such
subjective quality assessments [26]. Furthermore, stan-
dard MOS studies do not capture consistency between low-
resolution inputs and high-resolution outputs. We use a 2-
alternative forced-choice (2AFC) paradigm to measure how
well humans can discriminate true images from those gen-
erated from a model. In Task-1 subjects were shown a low
resolution input in between two high-resolution images, one
being the real image (ground truth), and the other generated
from the model. Subjects were asked “Which of the two im-
ages is a better high quality version of the low resolution
image in the middle?” This task takes into account both im-
age quality and consistency with the low resolution input.
Task-2 is similar to Task-1, except that the low-resolution



Bicubic FSRGAN [7] PULSE [28] Regression SR3

Figure 5: Comparison of different methods on the 16×16→ 128×128 face super-resolution task. Reference image has not been included
because of privacy concerns. Additional results in Appendix C.5.
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Figure 6: Face super-resolution human fool rates (higher is bet-
ter, photo-realistic samples yield a fool rate of 50%). Outputs of
4 models are compared against ground truth. (top) Subjects are
shown low-resolution inputs. (bottom) Inputs are not shown.

image was not shown, so subjects only had to select the im-
age that was more photo-realistic. They were asked “Which
image would you guess is from a camera?” Subjects viewed
images for 3 seconds before responding, in both tasks. The
source code for human evaluation can be found here 2.

The subject fool rate is the fraction of trials on which
a subject selects the model output over ground truth. Our
fool rates for each model are based on 50 subjects, each of
whom were shown 50 of the 100 images in the test set. Fig-
ure 6 shows the fool rates for Task-1 (top), and for Task-2
(bottom). In both experiments, the fool rate of SR3 is close
to 50%, indicating that SR3 produces images that are both
photo-realistic and faithful to the low-resolution inputs. We
find similar fool rates over a wide range of viewing dura-
tions up to 12 seconds.

The fool rates for FSRGAN and PULSE in Task-1 are
lower than the Regression baseline and SR3. We speculate
that the PULSE optimization has failed to converge to high
resolution images sufficiently close to the inputs. Indeed,

2https://tinyurl.com/sr3-human-eval-code

Fool rates (3 sec display w/ inputs, 64×64→ 256×256)
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Fool rates (3 sec display w/o inputs, 64×64→ 256×256)
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39.0%
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Figure 7: ImageNet super-resolution fool rates (higher is better,
photo-realistic samples yield a fool rate of 50%). SR3 and Regres-
sion outputs are compared against ground truth. (top) Subjects are
shown low-resolution inputs. (bottom) Inputs are not shown.

when asked solely about image quality in Task-2 (Fig. 6
(bottom)), the PULSE fool rate increases significantly.

The fool rate for the Regression baseline is lower in
Task-2 (Fig. 6 (bottom)) than Task-1. The regression model
tends to generate images that are blurry, but nevertheless
faithful to the low resolution input. We speculate that in
Task-1, given the inputs, subjects are influenced by consis-
tency, while in Task-2, ignoring consistency, they instead
focus on image sharpness. SR3 and Regression samples
used for human evaluation are provided here 3.

We conduct similar human evaluation studies on natural
images comparing SR3 and the regression baseline on Ima-
geNet. Figure 7 shows the results for Task-1 (top) and task-
2 (bottom). In both tasks with natural images, SR3 achieves
a human subject fool rate is close to 40%. Like the face
image experiments in Fig. 6, here again we find that the Re-
gression baseline yields a lower fool rate in Task-2, where
the low resolution image is not shown. Again we speculate
that this is a result of a somewhat simpler task (looking at
2 rather than 3 images), and the fact that subjects can focus
solely on image artifacts, such as blurriness, without having
to worry about consistency between model output and the
low resolution input.

To further appreciate the experimental results it is use-
3https://tinyurl.com/sr3-outputs

https://tinyurl.com/sr3-human-eval-code
https://tinyurl.com/sr3-outputs


Model FID-50k

Prior Work
VQ-VAE-2 [39] 38.1
BigGAN (Truncation 1.0) [4] 7.4
BigGAN (Truncation 1.5) [4] 11.8

Our Work
SR3 (Two Stage) 11.3

Table 4: FID scores for class-conditional 256×256 ImageNet.

ful to visually compare outputs of different models on the
same inputs, as in Figure 5. FSRGAN exhibits distortion in
face region and struggles with generating glasses properly
(e.g., top row). It also fails to recover texture details in the
hair region (see bottom row). PULSE often produces im-
ages that differ significantly from the input image, both in
the shape of the face and the background, and sometimes
in gender too (see bottom row) presumably due to failure
of the optimization to find a sufficiently good minima. As
noted above, our Regression baseline produces results con-
sistent to the input, however they are typically quite blurry.
By comparison, the SR3 results are consistent with the input
and contain more detailed image structure.

4.3. Cascaded High-Resolution Image Synthesis
We study cascaded image generation, where SR3 models

at different scales are chained together with unconditional
generative models, enabling high-resolution image synthe-
sis. Cascaded generation allows one to train different mod-
els in parallel, and each model in the cascade solves a sim-
pler task, requiring fewer parameters and less computation
for training. Inference with cascaded models is also more
efficient, especially for iterative refinement models. With
cascaded generation we found it effective to use more re-
finement steps at low-resolutions, and fewer steps at higher
resolutions. This was much more efficient than generating
directly at high resolution without sacrificing image quality.

We train a DDPM [17] model for unconditional 64×64
face generation. Samples from this model are then fed to
two 4× SR3 models, up-sampling to 2562 and then to 10242

pixels. Synthetic high-resolution face samples are shown in
Figure 8. In addition, we train an Improved DDPM [30]
model on class-conditional 64×64 ImageNet, and we pass
its generated samples to a 4× SR3 model yielding 2562 pix-
els. The 4× SR3 model is not conditioned on the class label.
See Figure 9 for representative samples.

Table 4 reports FID scores for the resulting class-
conditional ImageNet samples. Our 2-stage model im-
proves on VQ-VAE-2 [39], is comparable to deep BigGANs
[4] at truncation factor of 1.5 but underperforms them a
truncation factor of 1.0. Unlike BigGAN, our diffusion
models do not provide a knob to control sample quality vs.
sample diversity, and finding ways to do so is interesting
avenue for future research. Nichol and Dhariwal [30] con-

Figure 8: Synthetic 1024×1024 face images. We first sample
from an unconditional 64×64 diffusion model, then pass the sam-
ples through two 4× SR3 models, i.e., 64×64 → 256×256 →
1024×1024. Additional samples in Appendix C.7, C.8 and C.9.

currently trained cascaded generation models using super-
resolution conditioned on class labels (our super-resolution
is not conditioned on class labels), and observed a similar
trend in FID scores. The effectiveness of cascaded image
generation indicates that SR3 models are robust to the pre-
cise distribution of inputs (i.e., the specific form of anti-
aliasing and downsampling).

Ablation Studies: Table 5 shows ablation studies on our
64× 64→ 256× 256 Imagenet SR3 model. In order to im-
prove the robustness of the SR3 model, we experiment with
use of data augmentation while training. Specifically, we
trained the model with varying amounts of Gaussian Blur-
ring noise added to the low resolution input image. No
blurring is applied during inference. We find that this has
a siginificant impact, improving the FID score roughly by 2
points. We also explore the choice of Lp norm for the de-
noising objective (Equation 6). We find that L1 norm gives
slightly better FID scores than L2.



Figure 9: Synthetic 256×256 ImageNet images. We first draw
a random label, then sample a 64×64 image from a class-
conditional diffusion model, and apply a 4× SR3 model to obtain
256×256 images. Additional samples in Appendix C.10 and C.11.

Model FID-50k

Training with Augmentation
SR3 13.1
SR3 (w/ Gaussian Blur) 11.3

Objective Lp Norm
SR3 (L2) 11.8
SR3 (L1) 11.3

Table 5: Ablation study on SR3 model for class-conditional
256×256 ImageNet.

5. Discussion and Conclusion
Bias is an important problem in all generative models.

SR3 is no different, and suffers from bias issues. While in
theory, our log-likelihood based objective is mode cover-
ing (e.g., unlike some GAN-based objectives), we believe
it is likely our diffusion-based models drop modes. We ob-
served some evidence of mode dropping, the model consis-
tently generates nearly the same image output during sam-
pling (when conditioned on the same input). We also ob-
served the model to generate very continuous skin texture in
face super-resolution, dropping moles, pimples and pierc-
ings found in the reference. SR3 should not be used for
any real world super-resolution tasks, until these biases are
thoroughly understood and mitigated.

In conclusion, SR3 is an approach to image super-
resolution via iterative refinement. SR3 can be used in a cas-
caded fashion to generate high resolution super-resolution

images, as well as unconditional samples when cascaded
with a unconditional model. We demonstrate SR3 on
face and natural image super-resolution at high resolution
and high magnification ratios (e.g., 64×64→256×256 and
256×256→1024×1024). SR3 achieves a human fool rate
close to 50%, suggesting photo-realistic outputs.
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Appendix
This appendix includes further details about the architecture of the models used for super-resolution. It also formulates
the training objective in terms of a variation bound and in terms of denoising score-matching. We then provide additional
experimental results to complement those in the main body of the paper.

A. Task Specific Architectural Details
Table A.1 summarizes the primary architecture details for each super-resolution task. For a particular task, we use the same
architecture for both SR3 and Regression models. Figure A.1 describes our method of conditioning the diffusion model
on the low resolution image. We first interpolate the low resolution image to the target high resolution, and then simply
concatenate it with the input noisy high resolution image.

Task Channel Dim Depth Multipliers # ResNet Blocks # Parameters
16 × 16→ 128 × 128 128 {1, 2, 4, 8, 8} 3 550M
64 × 64→ 256 × 256 128 {1, 2, 4, 4, 8, 8} 3 625M
64 × 64→ 512 × 512 64 {1, 2, 4, 8, 8, 16, 16} 3 625M

256 × 256→ 1024 × 1024 16 {1, 2, 4, 8, 16, 32, 32, 32} 2 150M

Table A.1: Task specific architecture hyper-parameters for the U-Net model. Channel Dim is the dimension of the first U-Net layer, while
the depth multipliers are the multipliers for subsequent resolutions.

x · yt 1282, 128

642, 256

82, 1024 82, 1024

642, 256

1282, 128 yt−1

Figure A.1: Description of the U-Net architecture with skip connections. The low resolution input image x is interpolated to the target
high resolution, and concatenated with the noisy high resolution image yt. We show the activation dimensions for the example task of
16×16→ 128×128 super resolution.

B. Justification of the Training Objective
B.1. A Variational Bound Perspective

Following Ho et al. [17], we justify the choice of the training objective in (6) for the probabilistic model outlined in (9)
from a variational lower bound perspective. If the forward diffusion process is viewed as a fixed approximate posterior to the
inference process, one can derive the following variational lower bound on the marginal log-likelihood:

E(x,y0) log pθ(y0|x) ≥ Ex,y0
Eq(y1:T |y0)

[
log p(yT ) +

∑
t≥1

log
pθ(yt−1|yt,x)
q(yt|yt−1)

]
. (12)



Given the particular parameterization of the inference process outlined above, one can show [17] that the negative varia-
tional lower bound can be expressed as the following simplified loss, up to a constant weighting of each term for each time
step:

Ex,y0,ε

T∑
t=1

1

T

∥∥∥∥ε− εθ(x,√γty0 +√1− γtε, γt)
∥∥∥∥2
2

(13)

where ε ∼ N (0, I). Note that this objective function corresponds to L2 norm in (6), and a characterization of p(γ) in terms
of a uniform distribution over {γ1, . . . , γT }.

B.2. A Denoising Score-Matching Perspective

Our approach is also linked to denoising score matching [18, 58, 37, 46] for training unnormalized energy functions for
density estimation. These methods learn a parametric score function to approximate the gradient of the empirical data log-
density. To make sure that the gradient of the data log-density is well-defined, one often replaces each data point with a
Gaussian distribution with a small variance. Song and Ermon [50] advocate for the use of a Multi-scale Guassian mixture as
the target density, where each data point is perturbed with different amounts of Gaussian noise, so that Langevin dynamics
starting from pure noise can still yield reasonable samples.

One can view our approach as a variant of denoising score matching in which the target density is given by a mixture of
q(ỹ|y0, γ) = N (ỹ |√γy0, 1− γ) for different values of y0 and γ. Accordingly, the gradient of data log-density is given by

d log q(ỹ | y0, γ)
dỹ

= −
ỹ −√γy0√

1− γ
= − ε , (14)

which is used as the regression target of our model.

C. Additional Experimental Results
The following figures show more examples of SR3 on faces, natural images, and samples from unconditional generative

models, architectural details, more details about the formulation of the loss. We first show more examples of SR3, augmenting
the results shown in Figures 4, 3, 5. We then show cascaded generation of 1024 × 1024 face images, followed by more
unconditional samples for 1024× 1024 faces, and 256× 256 class conditional ImageNet samples.



Face Super-Resolution 64×64→ 512×512
Bicubic Regression SR3 (ours) Reference

Figure C.1: Additional results of a SR3 model (64×64→ 512×512), trained on FFHQ, and applied to images outside of the training set.
We crop and align these faces to be consistent with FFHQ using the script provided here.

https://gist.github.com/lzhbrian/bde87ab23b499dd02ba4f588258f57d5


Bicubic Regression SR3 (ours) Reference

Figure C.2: Additional results of a SR3 model (64×64→ 512×512), trained on FFHQ, and applied to images outside of the training set.
We crop and align these faces to be consistent with FFHQ using the script provided here.

https://gist.github.com/lzhbrian/bde87ab23b499dd02ba4f588258f57d5


Natural Image Super-Resolution 64×64→ 256×256
Bicubic Regression SR3 (ours) Reference

Figure C.3: Additional results of a SR3 model (64×64→ 256×256), trained on ImageNet and evaluated on ImageNet test images.



Bicubic Regression SR3 (ours) Reference

Figure C.4: Additional results of a SR3 model (64×64→ 256×256), trained on ImageNet and evaluated on ImageNet test images.



Benchmark Comparison on Test Faces 16×16→ 128×128
Bicubic FSRGAN [7] PULSE [28] Regression SR3

Figure C.5: Additional results showing the comparison between different methods on the 16×16→ 128×128 face super-resolution task.



Cascaded Face Generation 1024×1024

(64×64) (256×256) (1024×1024)

Figure C.6: Cascaded generation on faces using an unconditional model chained with two SR3 models.



Unconditional Face Samples 1024×1024

Figure C.7: Additional Synthetic 1024×1024 faces images. We first sample from an unconditional 64×64 diffusion model, then pass the
samples through two 4× SR3 models, i.e., 64×64→ 256×256→ 1024×1024.



Figure C.8: Additional Synthetic 1024×1024 faces images. We first sample from an unconditional 64×64 diffusion model, then pass the
samples through two 4× SR3 models, i.e., 64×64→ 256×256→ 1024×1024.



Figure C.9: Additional Synthetic 1024×1024 faces images. We first sample from an unconditional 64×64 diffusion model, then pass the
samples through two 4× SR3 models, i.e., 64×64→ 256×256→ 1024×1024.



Class Conditional ImageNet Samples 256×256

Figure C.10: Additional Synthetic 256×256 ImageNet images. We first draw a random label, then sample a 64×64 image from a class-
conditional diffusion model, and apply a 4× SR3 model to obtain 256×256 images.



Figure C.11: Classwise Synthetic 256×256 ImageNet images. Each row represents a specific ImageNet class. Classes from top to bottom
- Goldfish, Indigo Bird, Red Fox, Monarch Butterfly, African Elephant, Balloon, Church, Fire Truck. For a given label, we sample a 64×64
image from a class-conditional diffusion model, and apply a 4× SR3 model to obtain 256×256 images.



C.1. Failure Cases of SR3

While SR3 generates high quality super-resolution natural images as well as aligned face images, we do observe certain
instances where the model falls short. In this section, we highlight some of these examples.

SR3 struggles with generating certain complex, regular hair patterns, an example of which is the finely braided hair in
the top row of Figure C.2. Since the FFHQ dataset used for training is relatively small, it is possible that the model is not
exposed to enough examples of such structures. Long range correlations of fine details such as the consistency of highlights
in eyes can also be challenging. As shown in the 2nd row of Figure C.2, the model also struggles with generating eye-glasses
in certain cases, especially when the glasses are frameless. In such cases the structure of the glasses is much harder to discern
from the low resolution inputs.

SR3 also fails to generate natural looking text in certain ImageNet images. While it has learned to capture some properties
of text, it has not learned common alphabets. So while SR3 is able to generate much sharper characters compared to the
regression baseline, the lack of meaningful structure of its generated text makes it easier for the human subjects to distinguish
between real and generated images. The last row in Figure C.3 shows one such instance.

The bottom row in Figure C.4 shows an instance where the model has not correctly inferred the fine structure on the side
of the building. When the low resolution input does not reflect many of the fine details in the high resolution original, SR3
will infer structure. In some cases it will introduce texture (e.g., the collar of the shirt in Figure 1). In others, like the building
here it may infer a more uniform texture. As such, while the SR3 output in the bottom row of Figure C.4 is much sharper
than the regression baseline, it also lacks many perceptually relevant details when compared with the reference image.

D. Images with the Lowest and Highest Fool Rates
In interpreting the fool rate results in Figure 6, it is interesting to inspect those images that maximize the fool rates for a

given technique, as well as those images that minimize the fool rate. This provides insight into the nature of the problems
that models exhibit, as well as cases in which the model outputs are good enough to regularly fool people.

In Figure D.1 we display the images with the lowest fool rates generated by PULSE [28] and SR3 for both Task-1 (the
conditional task), and Task-2, (the unconditional task). In order to be consistent with our human study interface, we show
the corresponding low resolution image only for Task-1. Notice that images from PULSE for which the fool rate is low have
obvious distortions, and the fool rates are lower than 10% for both tasks. For SR3, by comparison, the images with the lowest
fool rates are still reasonably good, with much higher fool rates of 14% and 19% in Task-1, and 21% and 26% in Task-2.

Figure D.2 shows images that best fool human subjects. In this case, it is interesting to note that the best fool rates for
SR3 are 84% and 88%. The corresponding original images are somewhat noisy, and as a consequence, many subjects refer
the SR3 outputs.



Task-1: Human Evaluation given low-resolution inputs

Lowest Mean Fool Rates for PULSE Lowest Mean Fool Rates for SR3
PULSE Input SR3 SR3 Input PULSE

Fool Rate: 0% Fool Rate: 53.4% Fool Rate: 14% Fool Rate: 4.5%

Fool Rate: 2.2% Fool Rate: 60.4% Fool Rate: 18.6% Fool Rate: 11.4%

Highest Mean Fool Rates for PULSE Highest Mean Fool Rates for SR3
PULSE Input SR3 SR3 Input PULSE

Fool Rate: 63.4% Fool Rate: 62.7% Fool Rate: 88.3% Fool Rate: 38.6%

Fool Rate: 63.4% Fool Rate: 69.7% Fool Rate: 83.7% Fool Rate: 54.5%

Figure D.1: Examples with lowest and highest fool rates for PULSE and SR3 based on Task-1. Task-1 involves comparing the outputs
of each algorithm with reference high-resolution images in the presence of low-resolution inputs, but for privacy reasons reference images
are not included. Instead, we show the corresponding outputs from PULSE and SR3 for each input image and report the Mean Fool Rate
for each image right below it.



Task-2: Human Evaluation without low-resolution inputs

Lowest Mean Fool Rates for PULSE Lowest Mean Fool Rates for SR3
PULSE SR3 SR3 PULSE

Fool Rate: 8.9% Fool Rate: 19% Fool Rate: 21.4% Fool Rate: 15.5%

Fool Rate: 8.9% Fool Rate: 54.8% Fool Rate: 26.2% Fool Rate: 31.1%

Highest Mean Fool Rates for PULSE Highest Mean Fool Rates for SR3
PULSE SR3 SR3 PULSE

Fool Rate: 75.5% Fool Rate: 61.9% Fool Rate: 78.5% Fool Rate: 35.5%

Fool Rate: 66.7% Fool Rate: 47.6% Fool Rate: 66.7% Fool Rate: 55.6%

Figure D.2: Examples with lowest and highest fool rates for PULSE and SR3 based on Task-2. Task-2 involves comparing the outputs of
each algorithm with reference high-resolution images in the absence of low-resolution inputs, but for privacy reasons reference images are
not included. Instead, we show the corresponding outputs from PULSE and SR3 for each input image and report the Mean Fool Rate for
each image right below it.


