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Part 1. General Theory and Basics of Implementation
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E(2) - steerable feature fields
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Induced representation:

) = ([IdE € plg) - £)x) = ple)- (g7 (x—1)).
(1)

(R?,4) x G: G can be SO(2), the group ({£1}, %) of the
reflections along a given axis, the cyclic groups Cy (discrete
rotations by 27), the dihedral groups Dy (Cy + reflections) or the
orthogonal group O(2) itself.
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E(2) - steerable feature fields (2)

>

In analogy to the feature spaces of vanilla CNNs comprising
multiple channels, the feature spaces of steerable CNNs
consist of multiple feature fields f;: R2 — RS, each of which is
associated with its own type p;: G — GL(R®).

A common example for a stack of feature fields are RGB
images f: R2—R3. Since the color channels transform
independently under rotations we identify them as three
independent scalar fields. The stacked field representation is
thus given by the direct sum @?:1 1 = id3x3 of three trivial
representations.

While the input and output types of steerable CNNs are given
by the learning task, the user needs to specify the types p;
of intermediate feature fields as hyperparameters, similar to
the choice of channels for vanilla CNNs.
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E(2) - steerable convolutions

As proven for Euclidean groups, the most general equivariant linear
map between steerable feature spaces, transforming under p;, and
Pout, IS given by convolutions with G-steerable kernels

k : R? — R%utXcn  satisfying a kernel constraint

k(gx) = pout(8)k(x)pin(g™") Vg€ G, xeR*.  (2)

Intuitively, this constraint determines the form of the kernel in
transformed coordinates gx in terms of the kernel in
non-transformed coordinates x and thus its response to transformed
input fields.
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General solution of the kernel constraint for O(2) and
subgroups

After decomposition into irreps k(x) — Hgﬁ (i,j - types +
multiplicities).

Since all irreps of O(2) correspond to one unique angular
frequency, it is convenient to expand the kernel w.l.o.g. in terms of
an (angular) Fourier series

fhs(x(r.9) = Aaso(r)+ Y | Aasu(r) cos(ue)
+ Baﬁ,u(r)sin(m)} 3)

By inserting this expansion into the irrep constraints and projecting
on individual harmonics we obtain constraints on the Fourier
coefficients, forcing most of them to be zero.

6/22



Analytical solutions

G = SO(2)

Pm Yn Yo

of the irrep kernel constraints. Example:

n, n € NT

Yo [1]

[cos(ng) sin(ng)], [ - sin(ng) cos(ng)]

cos(mg)
" sin(ma) |

+
meN {—sin(md))}

cos(me)

cos (m m é) fsm(m ) ) -sin ((m 71)&)) ((m n)d))
sm(m 71)6)) cos (m ) d)) cos ((m n) ) sm(m n) d))
cos(fm+n)¢)  sin(fm-+n) -sin((m+n)¢)  cos(m+n)eo
smgm +71)C)) -cos ((m+n) C)% cos ((m+n ) sin é(ern)C)g

» To form the kernels such basis functions are multiplied by
r-dependent function + learnable weights.

>
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Group representations and nonlinearities

> A general class of representations are unitary representations
which preserve the norm of their representation space, that is,
they satisfy |punitary (8)F(X)| = |F(x)| V g€G.

» nonlinearities which solely act on the norm of feature vectors
but preserve their orientation are equivariant w.r.t. unitary
representations opnorm : R€ — R,

F(x) o (1 ()]) )

for some nonlinear function 1 : R>o — R>q acting on the
norm of feature vectors.

» Norm-RelUs, defined by n(|f(x)|) = ReLU(|f(x)| — b) where
b € R" is a learned bias

> also it was considered squashing nonlinearities
f 2
n(F(x)]) = st
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Implementation details

> free to choose any radial profile, here: Gaussian radial profiles

exp( (r R)?) of width o, centered at radii
- [s/2].
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Figure 2: Illustration of the circular harmonics v (r, ¢) = 7 (r) e?*®
sampled on a 9 x 9 grid. Each row shows a different radial part j, the
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Implementation details (2)

> In practice, we consider digitized signals on a pixel grid Z>.

» this prevents equivariance from being exact for groups which
are not symmetries of the grid (for Z? - subgroups of D)

» sample the analytically found kernel basis {k1, ..., ks} on a
square grid of size s x s to obtain their numerical
representation of shape (d, cout, Gn, S, S).

» important to prevent aliasing effects: when the harmonics
being sampled with a too low rate, a basis kernel can appear
as a lower harmonic and might therefore introduce
non-equivariant kernels to the sampled basis.

» radial profile: ring whose circumference ~ angular sampling
rate ~ radius.

» It is therefore appropriate to bandlimit the kernel basis by a
cutoff frequency which is chosen in proportion to the rings’
radii.

» There is a work where the choice is restricted only to m =0, 1
and this gives a good results

» Since the basis kernels are harmonics of specific angular
frequencies this is easily implemented by discarding high 10/22



Implementation details (3)

» At runtime, the convolution kernels are expanded by
contracting the sampled kernel bases with learned weights.
Specifically, each basis {klw, . k;’jg}, realized by a tensor of
shape (d"?, Cout,v> Cin,6» S, S), is expanded into the
corresponding block k70 of the kernel by contracting it with a
tensor of learned parameters of shape (d7?).

» This process is sped up further by batching together multiple
occurrences of the same pair of representations and thus block
bases.

» The resulting kernels are then used in a standard convolution
routine.
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Implementation details (4)

| 2

>

implementation is provided as a PyTorch extension which is
available at https://github.com/QUVA-Lab/e2cnn.

The library provides equivariant versions of many neural
network operations, including G-steerable convolutions,
nonlinearities, mappings to produce invariant features, spatial
pooling, batch normalization and dropout.

The user interface hides most complications on group theory
and solutions of the kernel space constraint and requires the
user only to specify the transformation laws of feature spaces.
For instance, a Cg-equivariant convolution operation, mapping
a RGB image, identified as three scalar fields, to ten regular
feature fields, would be instantiated by:

r2 _act = Rot2dOnR2(N=8)

feat type in = FieldType(r2 act, 3*[r2_act.trivial _repr])
feat type out = FieldType(r2 act, 10¥[r2 act.regular repr])
conv_op = R2Conv(feat type in, feat type out,

kernel _size=5)
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https://github.com/QUVA-Lab/e2cnn

Implementation details (5)

Everything the user has to do is to specify that
> the group Cg acts on R? by rotating it (line 1)
> to define the types pj, = @?:1 1 and pour = @}il ,o,Ce“g of the
input and output feature fields (lines 2 and 3)
» which are subsequently passed to the constructor of the
steerable convolution (line 4).
r2 _act = Rot2dOnR2(N=8)
feat type in = FieldType(r2 act, 3*[r2 act.trivial repr])
feat type out = FieldType(r2 act, 10¥[r2 act.regular repr])
conv_op = R2Conv(feat type in, feat type out,
kernel size=b5)
Experiments with various equivariant CNNs can be found in a

dedicated repository
athttps://github.com/QUVA-Lab/e2cnn_experiments
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https://github.com/QUVA-Lab/e2cnn_experiments

Part 2. More Details of the Implementation and
Performance
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[NpeaBapuTenbHble 3aMedaHmns

P [naBHOe: y4ET CUMMETPUiA OTKPbIBAET BO3MOXXHOCTU IS
OFPOMHOrO 4Mcna pPasanyHbIX apxXNTEKTYpP
» BLIOOP rpynnbl; NPeACTaBAEHWIA A4S CIOEB; BO3SMOXHbIX
CY>XKEHUI AN pacLlUNPEHNi FPynnbl CUMMETPUIA OT CNOst K

cnoto
» Bbibop Yncna Mog A4S ANS SKBUBAPUAHTHOIO A4pa
(dbunbTpa); BBIGOP pasmansHoro npoduns:

> napamertpuyeckuii: rayccos (R € Z n o) (Weiler et al.)
> NponsBOJILHO-AUCKPETHBIN (=0byuaemble Beca; Worral et al.)

> criocob anckpetusaumn (camnauur, Gaussian blur)
» BbIbOp HenuHelHOCTeI
> Tonbko B ocHOBHOW pabote Weiler et al. npogenaHa orpomHas
paboTa no cpaBHeHWto 57 pa3nudHbIX mogenei

P> + 0bbluHbIl BoIOOP 0DLLER apxXUTEKTYPLI U FMMNEpPNapamMeTpoB
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Obuiast apxMTekTypa 3KCrnepuMeHTalbHbIX CETENR

» Each convolution block includes a convolution layer,

layer

output fields

conv block 7 x 7 (pad 1)
conv block 5 x 5 (pad 2)
max pooling 2 x 2

conv block 5 x 5 (pad 2)
conv block 5 x 5 (pad 2)
max pooling 2 x 2
conv block 5 x 5 (pad 2)
conv block 5 x 5
invariant projection
global average pooling
fully connected

fully connected + softmax

16
24
24
32
32
32
48
64
64
64
64
10

batch-normalization and a nonlinearity.

» The width is expressed as the number of fields of a regular Cig

model
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HekoTopble geTany apxuTekTypbl 1 runepnapameTpoB

>

>

Training is performed with a batch size of 64 samples, using
the Adam optimizer.

The learning rate is initialized to 10™3 and decayed
exponentially by a factor of 0.8 per epoch, starting after a
burn in phase of 10 epochs.

In all experiments: steerable bases with Gaussian radial profiles
of width ¢ = 0.6 for all except the outermost ring where we
use o = 0.4.

» The strong cutoff in the rings of maximal radius is motivated
by empirical observation that these rings introduce a relatively
high equivariance error for higher frequencies.

a strong bandlimiting policy was applied which permits
frequencies up to 0,2, 2 for radii 0,1,2 in a 5 x 5 kernel and
up to 0,2,3,2 for radii 0,1,2,3 in a 7 x 7 kernel.

In order to not disadvantage models with lower levels of
equivariance and since it would be done in real scenarios we
train all models using augmentation by the transformations
present in the corresponding dataset.
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HeKOTOpr AETANIN SKCNEPUMEHTOB

» Table 3 Weiler et al. shows the test errors of 57 different
models on the three MNIST variants (MNIST O(2); MNIST
rot; MNIST 12k)

» The statistics of each entry are averaged over (at least) 6
samples.

» In order to not disadvantage models with lower levels of
equivariance and since it would be done in real scenarios we
train all models using augmentation by the transformations
present in the corresponding dataset.

» All models apply some form of invariant mapping to scalar
fields followed by spatial pooling after the last convolutional
layer such that the predictions are guaranteed to be invariant
under the equivariance group of the model.
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Some parts of the main Table with the results

group  representation nonlinearity invariant map  citation MNISTO(2) MNISTrot MNIST 12k
{e}  (conventional CNN) ELU - - 553+020 2.87+000 091+006
[eh 78] 519008 2482013 08200
Cy 78] 3.29:007 132002 0872004
v C3 - 2.87T+004 1192006 0.80£0.03
o, BITIZION0] 240005 102005 0.99 2003
Cg regular Preg ELU G-pooling 3] 2.08+003 0.89x003 0.84dx002
Cy 7] 196:006 0842002 0.89:003
8§ Cip M 1.95+007 0.80%003 0.89+003
Cig 78] 1.93:004 0822002 0951004
v Cog (i 1.95+0.05 0.94 +0.06
Cy m 243+ 0.05 1.01£0.03
Cy - 2.03+0.05 0.91 +0.02
Ci»  quotient 5pmpc\;2p;;§"‘" D2pal D3tk - 2041000 0812002 0952002
Cie 5 reg D2t 2 D2pquer = i s 2004001 086004 098001
Cyo 5 g 2P D2t By - 201+005 0832003 0.96001
regular/scalar 1y <5 ey ST ELU, G-pooling 2024002 0.90:005 0.93:001
Cis  regular/vector oy o Preg eetor pool, Py vector field 2124002  1.07+003 078003
mixed veclor  preg e = ‘megv%} preg iy ELU, vector field 1.87+003 083002 0.63+0.02
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Some parts of the main Table with the results (2)

"50(2)

irreps < 1 Do
meps <3 B,
irreps < 5 Dy
irreps < 7 o
===l ®§_U U-E ELU. norm-ReLU conv2triv
Cemreps <1 @, v,
C-irreps < 3 $::41 Y&
C-irreps < 5 Q?_u @","C
C-irreps < 7 ®Lu g
ELU, squash
ELU, norm-ReLU
ELU. shared norm-ReLU norm
) a shared norm-ReLU
irreps < 3 $l7U o ELU. e
-8 conv2triv
ELU, shared gate
ELU, gate
norm
ELU, shared gate

R = 1=

2.98 +0.01
3.02+0a8
3244005
3.30+0.11
3.39+ 000
3.48+ 0.8
3.59 4 0.08
3.64+ 0.2
3.10+0.00
3.23 £ 0.08
2.88+0.11
3.61 4009
2.3740.06
2.33 £ 0.08
2.23 +0.00
2.20+0.08

1.38 £ 000
1.38 2000
ld4dx010
151010
1472006
1.51%005
1.59+ 005
1.61 %006
lLdl+oos
1.38 £ 008
115006
1.57 + 005
1.09£ 003
1.11£003
1.04£0.04
1.01+00a

129+ 005
1272 0.03
1.36 £ 0.04
140 £ 0.07
1422001
1.53 £ 0.07
1.55+ 0.06
1.62£0.03
146+ 005
1.33 £0.03
118003
1.88£0.05
110+ 002
112004
1.05 £ 0.06
1.03£0.03
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Test errors of Cy and Dy regular steerable CNNs for
different orders N for all three MNIST variants.
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HekoTopble BbiBOAbI

» All equivariant models outperform the non-equivariant
CNN baseline.

» Overall, regular steerable CNNs with Cy, Dy perform very well
(better than SO(2), O(2)). [ins meHs 370 HeoxMAAHHOCTB!

» The reason for this is that feature vectors, transforming under
regular representations, can encode any function on the group

(7).

> ONTMMasnbHas AUCKPETHas rPynna He CBsi3aHa C W3OMETpUeli
peleTkn (T.e. CKOpee BCEro MOXET bbiTh Bbiwe, Yem Co Ans
TEKCOrOHasIbHOW PeLleTKn)
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