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Part 1. General Theory and Basics of Implementation
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E(2) - steerable feature fields

Induced representation:

f (x) 7→
([

Ind
(R2,+)oG
G ρ

]
(tg) · f

)
(x) := ρ(g) · f

(
g−1(x − t)

)
.

(1)

(R2,+)o G : G can be SO(2), the group ({±1}, ∗) of the
reflections along a given axis, the cyclic groups CN (discrete
rotations by 2π

N ), the dihedral groups DN (CN + reflections) or the
orthogonal group O(2) itself.
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E(2) - steerable feature fields (2)

I In analogy to the feature spaces of vanilla CNNs comprising
multiple channels, the feature spaces of steerable CNNs
consist of multiple feature fields fi : R2 → Rci , each of which is
associated with its own type ρi : G → GL(Rci ).

I A common example for a stack of feature fields are RGB
images f : R2→R3. Since the color channels transform
independently under rotations we identify them as three
independent scalar fields. The stacked field representation is
thus given by the direct sum

⊕3
i=1 1 = id3×3 of three trivial

representations.
I While the input and output types of steerable CNNs are given

by the learning task, the user needs to specify the types ρi
of intermediate feature fields as hyperparameters, similar to
the choice of channels for vanilla CNNs.
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E(2) - steerable convolutions

As proven for Euclidean groups, the most general equivariant linear
map between steerable feature spaces, transforming under ρin and
ρout, is given by convolutions with G -steerable kernels
k : R2 → Rcout×cin , satisfying a kernel constraint

k(gx) = ρout(g)k(x)ρin(g
−1) ∀g ∈ G , x ∈ R2 . (2)

Intuitively, this constraint determines the form of the kernel in
transformed coordinates gx in terms of the kernel in
non-transformed coordinates x and thus its response to transformed
input fields.
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General solution of the kernel constraint for O(2) and
subgroups

After decomposition into irreps k(x)→ κijαβ (i , j - types +
multiplicities).

Since all irreps of O(2) correspond to one unique angular
frequency, it is convenient to expand the kernel w.l.o.g. in terms of
an (angular) Fourier series

κijαβ
(
x(r , φ)

)
= Aαβ,0(r) +

∑∞

µ=1

[
Aαβ,µ(r) cos(µφ)

+ Bαβ,µ(r) sin(µφ)
]

(3)

By inserting this expansion into the irrep constraints and projecting
on individual harmonics we obtain constraints on the Fourier
coefficients, forcing most of them to be zero.
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Analytical solutions of the irrep kernel constraints. Example:
G = SO(2)

I To form the kernels such basis functions are multiplied by
r -dependent function + learnable weights.

I
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Group representations and nonlinearities
I A general class of representations are unitary representations

which preserve the norm of their representation space, that is,
they satisfy |ρunitary(g)f (x)| =

∣∣f (x)∣∣ ∀ g∈G .
I nonlinearities which solely act on the norm of feature vectors

but preserve their orientation are equivariant w.r.t. unitary
representations σnorm : Rc → Rc ,

f (x) 7→ η
(
|f (x)|

) f (x)

|f (x)|

for some nonlinear function η : R≥0 → R≥0 acting on the
norm of feature vectors.

I Norm-ReLUs, defined by η(|f (x)|) = ReLU(|f (x)| − b) where
b ∈ R+ is a learned bias

I also it was considered squashing nonlinearities
η(|f (x)|) = |f (x)|2

|f (x)|2+1
.
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Implementation details

I free to choose any radial profile, here: Gaussian radial profiles
exp

(
1

2σ2 (r 9R)2
)
of width σ, centered at radii

R = 1, . . . , bs/2c.
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Implementation details (2)
I In practice, we consider digitized signals on a pixel grid Z2.

I this prevents equivariance from being exact for groups which
are not symmetries of the grid (for Z2 - subgroups of D4)

I sample the analytically found kernel basis {k1, . . . , kd} on a
square grid of size s×s to obtain their numerical
representation of shape (d , cout, cin, s, s).
I important to prevent aliasing effects: when the harmonics

being sampled with a too low rate, a basis kernel can appear
as a lower harmonic and might therefore introduce
non-equivariant kernels to the sampled basis.

I radial profile: ring whose circumference ∼ angular sampling
rate ∼ radius.

I It is therefore appropriate to bandlimit the kernel basis by a
cutoff frequency which is chosen in proportion to the rings’
radii.

I There is a work where the choice is restricted only to m = 0, 1
and this gives a good results

I Since the basis kernels are harmonics of specific angular
frequencies this is easily implemented by discarding high
frequency solutions.
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Implementation details (3)

I At runtime, the convolution kernels are expanded by
contracting the sampled kernel bases with learned weights.
Specifically, each basis

{
kγδ1 , . . . , kγδ

dγδ

}
, realized by a tensor of

shape (dγδ, cout,γ , cin,δ, s, s), is expanded into the
corresponding block kγδ of the kernel by contracting it with a
tensor of learned parameters of shape (dγδ).

I This process is sped up further by batching together multiple
occurrences of the same pair of representations and thus block
bases.

I The resulting kernels are then used in a standard convolution
routine.
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Implementation details (4)
I implementation is provided as a PyTorch extension which is

available at https://github.com/QUVA-Lab/e2cnn.
I The library provides equivariant versions of many neural

network operations, including G-steerable convolutions,
nonlinearities, mappings to produce invariant features, spatial
pooling, batch normalization and dropout.

I The user interface hides most complications on group theory
and solutions of the kernel space constraint and requires the
user only to specify the transformation laws of feature spaces.
For instance, a C8-equivariant convolution operation, mapping
a RGB image, identified as three scalar fields, to ten regular
feature fields, would be instantiated by:

r2_act = Rot2dOnR2(N=8)
feat_type_in = FieldType(r2_act, 3*[r2_act.trivial_repr])
feat_type_out = FieldType(r2_act, 10*[r2_act.regular_repr])
conv_op = R2Conv(feat_type_in, feat_type_out,
kernel_size=5)
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Implementation details (5)

Everything the user has to do is to specify that
I the group C8 acts on R2 by rotating it (line 1)
I to define the types ρin =

⊕3
i=1 1 and ρout =

⊕10
i=1 ρ

C4
reg of the

input and output feature fields (lines 2 and 3)
I which are subsequently passed to the constructor of the

steerable convolution (line 4).
r2_act = Rot2dOnR2(N=8)
feat_type_in = FieldType(r2_act, 3*[r2_act.trivial_repr])
feat_type_out = FieldType(r2_act, 10*[r2_act.regular_repr])
conv_op = R2Conv(feat_type_in, feat_type_out,
kernel_size=5)
Experiments with various equivariant CNNs can be found in a
dedicated repository
athttps://github.com/QUVA-Lab/e2cnn_experiments
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Part 2. More Details of the Implementation and
Performance
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Предварительные замечания

I Главное: учет симметрий открывает возможности для
огромного числа различных архитектур
I выбор группы; представлений для слоев; возможных

сужений или расширений группы симметрий от слоя к
слою

I выбор числа мод для для эквивариантного ядра
(фильтра); выбор радиального профиля:

I параметрический: гауссов (R ∈ Z и σ) (Weiler et al.)
I произвольно-дискретный (=обучаемые веса; Worral et al.)

I способ дискретизации (сэмплинг, Gaussian blur)
I выбор нелинейностей

I только в основной работе Weiler et al. проделана огромная
работа по сравнению 57 различных моделей

I + обычный выбор общей архитектуры и гиперпараметров
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Общая архитектура экспериментальных сетей

I Each convolution block includes a convolution layer,
batch-normalization and a nonlinearity.

I The width is expressed as the number of fields of a regular C16

model
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Некоторые детали архитектуры и гиперпараметров
I Training is performed with a batch size of 64 samples, using

the Adam optimizer.
I The learning rate is initialized to 10−3 and decayed

exponentially by a factor of 0.8 per epoch, starting after a
burn in phase of 10 epochs.

I In all experiments: steerable bases with Gaussian radial profiles
of width σ = 0.6 for all except the outermost ring where we
use σ = 0.4.
I The strong cutoff in the rings of maximal radius is motivated

by empirical observation that these rings introduce a relatively
high equivariance error for higher frequencies.

I a strong bandlimiting policy was applied which permits
frequencies up to 0, 2, 2 for radii 0, 1, 2 in a 5× 5 kernel and
up to 0, 2, 3, 2 for radii 0, 1, 2, 3 in a 7× 7 kernel.

I In order to not disadvantage models with lower levels of
equivariance and since it would be done in real scenarios we
train all models using augmentation by the transformations
present in the corresponding dataset.
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Некоторые детали экспериментов

I Table 3 Weiler et al. shows the test errors of 57 different
models on the three MNIST variants (MNIST O(2); MNIST
rot; MNIST 12k)

I The statistics of each entry are averaged over (at least) 6
samples.

I In order to not disadvantage models with lower levels of
equivariance and since it would be done in real scenarios we
train all models using augmentation by the transformations
present in the corresponding dataset.

I All models apply some form of invariant mapping to scalar
fields followed by spatial pooling after the last convolutional
layer such that the predictions are guaranteed to be invariant
under the equivariance group of the model.
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Some parts of the main Table with the results
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Some parts of the main Table with the results (2)
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Test errors of CN and DN regular steerable CNNs for
different orders N for all three MNIST variants.
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Некоторые выводы

I All equivariant models outperform the non-equivariant
CNN baseline.

I Overall, regular steerable CNNs with CN , DN perform very well
(better than SO(2), O(2)). Для меня это неожиданность!
I The reason for this is that feature vectors, transforming under

regular representations, can encode any function on the group
(??).

I оптимальная дискретная группа не связана с изометрией
решетки (т.е. скорее всего может быть выше, чем C6 для
гексогональной решетки)
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