Статус задачи классификации событий и определения энергии порождающих гамма-квантов на основании изображений черенковских телескопов в эксперименте TAIGA

Станислав Поляков НИИЯФ МГУ

Данные наземных телескопов для регистрации черенковского излучения (IACT) позволяют классифицировать события, вызвавшие широкие атмосферные ливни (ШАЛ), а также определять их параметры.

Основная задача, которую мы рассматривали — оценка энергии гамма-событий по изображениям в стереорежиме посредством нейронных сетей.

События

Рассматривались три выборки гамма-событий, сгенерированные посредством алгоритмов Монте-Карло для черенковских телескопов TAIGA:

- m1: 40583 событий, изображения с одного телескопа, диапазон энергий от 1.5 до 60 ТэВ;
- s1: 3400 событий, изображения с двух телескопов на переменном расстоянии от 300 до 350 метров, диапазон энергий от 1 до 45 Тэв;
- s2: 18359 событий, изображения с двух телескопов на фиксированном расстоянии 324 метра, диапазон энергий от 1 до 50 ТэВ.

Обучающие и тестовые выборки

Энергия гамма-событий оценивалась посредством сверточных нейронных сетей. Обучающие выборки составляли 80% от соответствующей выборки (m1, s1 или s2), тестовые выборки — оставшиеся 20% событий. Результаты (средняя относительная ошибка) усреднялись по 10 итерациям с различными разбиениями исходной выборки.

Результаты: сравнение по выборкам

Если при обучении использовалось только одно изображение (единственное в выборке m1 и первое в выборках s1 и s2), то при наилучшей найденной точности определения энергии относительная ошибка составляла: 23.3% для выборки m1, 20.8% для выборки s1 (первые изображения), 24.0% для выборки s2 (первые изображения).

Результаты: сравнение точности оценок при добавлении данных второго телескопа

Для выборки s1 наилучшие результаты — ошибка 20.8% при оценке с использованием только изображений с первого телескопа, 19.5% при оценке с использованием одного изображения, выбранного по суммарной яркости пикселей, 15.5% при оценке с использованием обоих изображений.

Для выборки s2 наилучшие результаты — ошибка 24.0% при оценке с использованием только изображений с первого телескопа, 20.0% при оценке с использованием одного изображения, выбранного по суммарной яркости пикселей, 12.5% при оценке с использованием обоих изображений.

Предварительная обработка данных

Рассматривались несколько вариантов предварительной обработки данных, например, обнуление отрицательных значений, взятие логарифма (точнее, log(max(x,0)+1)), сортировка изображений телескопов по суммарной яркости.

Систематическое сравнение по большому числу вариантов показывает, что эти решения влияют на результат, но весьма слабо, меняя среднюю ошибку на ~0.1-0.2%

(Наилучшие варианты: использовать для каждого изображения два входных канала, один с обнулением отрицательных сигналов и другой с логарифмом, сортировку по яркости не использовать.)

Архитектура нейронных сетей: объединение изображений

Систематически сравнивались три варианта обработки нейросетями двух изображений: с использованием общего набора сверток, применяющихся параллельно, с использованием двух независимых наборов сверток, и с использованием общего набора сверток, которому доступны одновременно данные с обоих изображений в разных входных каналах. Это также мало влияет на результат: изменение средней ошибки ~0.1-0.2%. (Лучшим оказался последний вариант.)

Архитектура нейронных сетей

Число слоев и нейронов в каждом слое, размер фильтров в конволютивных слоях варьировались существенно, но недостаточно для обобщенных выводов о преимуществах тех или иных вариантов. (И эти выводы, возможно, различались бы в зависимости от выборки: среди рассмотренных сетей для выборки m1 наилучшие результаты дают более простые сети с меньшим числом нейронов, для s1 — наоборот, более сложные, для s2 — средние.)

Среди рассмотренных вариантов архитектуры сетей средняя ошибка для выборки s2 менялсь от 12,5% до 13,9%, для s1 — от 15.5% до 18.4%.

Пример архитектуры нейронной сети

Сеть, дающая наилучшие результаты на выборке s2:

Input: 30x31x4

Conv2D 5x5x12

AvgPool 2x2

Conv2D 5x5x25

AvgPool 2x2

Conv2D 3x3x25

AvgPool 2x2

Flatten $3x3x25 \rightarrow 225$

Fully connected 50

Fully connected 50

Fully connected 50

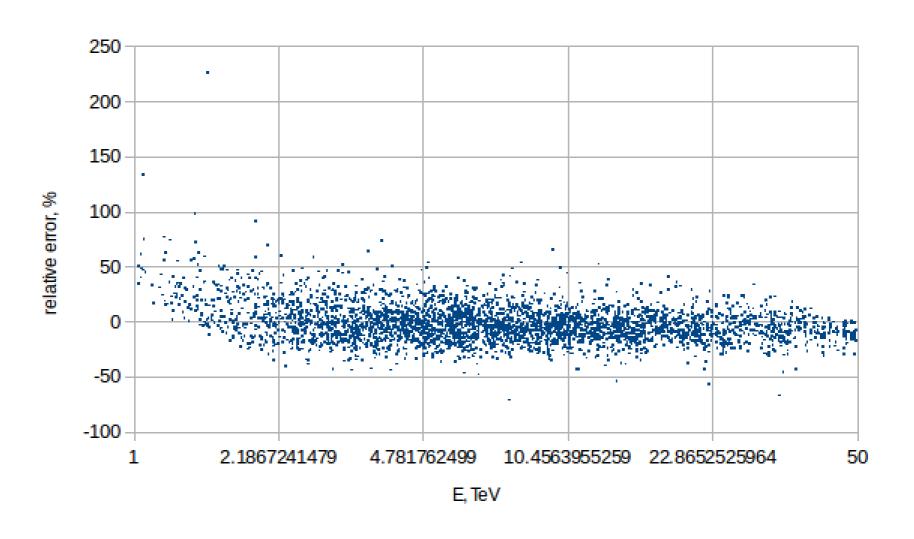
Output 1

Dropout

Дропаут (случайное обнуление выходных значений нейронов) не упомянут как часть архитектуры сети, поскольку при применении обученной нейросети он не используется. Однако при обучении он использовался с одним и тем же параметром вероятности обнуления р после каждого скрытого слоя. Выбор параметра р значительно влияет на результаты: так, для одной и той же сети можно получить среднюю ошибку 13.0% при р=0.025 и 31.1% при р=0.2.

Для каждой сети обучение выполнялось с несколькими положительными значениями параметра р (до 0.2 с шагом 0.025) и выбирался лучший результат.

Относительная ошибка оценки в зависимости от энергии события



Основные результаты

Были обучены нейросети для оценки энергии по изображениям с черенковских телескопов проекта TAIGA. Показано, что точность оценки можно значительно повысить, добавив изображение со второго телескопа, что влияние архитектуры сети на точность оценки также существенно. В то же время рассмотренные варианты предварительной обработки данных и способов объединения изображений с телескопов влияют на точность оценок незначительно. Лучший из найденных вариантов дает среднюю относительную ошибку 12.5% на большей из двух выборок, для которых доступны изображения двух телескопов.

Упрощенные оценки

Если всегда давать одну и ту же оценку (учитывая распределение энергии в выборке), можно получить среднюю ошибку 49% для выборки m1 (оценка 3.86 ТэВ), 46.5% для s1 (оценка 2.81 ТэВ), 57.2% для s2 (оценка 3.34 ТэВ).

Можно использовать всего два значения: усредненную яркость с первого и второго телескопов. Этого достаточно, чтобы получить среднюю ошибку 23% для s1 и 36.9% для s2.

Классификация событий

Задача классификации событий на основании изображений двух телескопов рассматривалась только для выборки s1 (для s2 не были доступны изображения для адронных событий).

Архитектура сети для классификации событий

```
Input: 30x31x2
                  Conv2D 5x5x128
Conv2D 5x5x128
AvgPool 2x2
                  AvgPool 2x2
                  Conv2D 5x5x200
Conv2D 5x5x200
AvgPool 2x2
                AvgPool 2x2
                Conv2D 5x5x300
Conv2D 5x5x300
AvgPool 2x2
                   AvgPool 2x2
           Dropout, p=0.5
     Fully connected layer, 640
           Dropout, p=0.5
     Fully connected layer, 256
           Dropout, p=0.5
          Output layer, 2
```

Результаты классификации событий (предварительные)

Сеть обучалась 5 раз. Q-фактор был равен 17.3, 24.2 и в трех случаях бесконечный (т.е. адронных событий, ошибочно распознанных как гамма-события, не было). Для сравнения та же сеть обучалась с использованием только первого (продублированного) изображения, в этом случае Q-фактор получился 6.2, 7.5, 7.7, 8.2, 10.3.

Q-фактор определяется как $Q = \frac{\Gamma/N_{\Gamma}}{\sqrt{\Gamma'/N_{P}}}$,

где ГиГ'— число гамма- и адронных событий, распознанных как гамма-события, N_{Γ} и N_{P} — полное число гамма- и адронных событий.

Необходимое условие: Γ ≥ $N_{\Gamma}/2$.