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Abstract—Modern Imaging Atmospheric Cherenkov Telescopes (IACTs) generate a huge amount of data
that must be classified automatically, ideally in real time. Currently, machine learning-based solutions
are increasingly being used to solve classification problems. However, these classifiers require proper
training data sets to work correctly. The problem with training neural networks on real IACT data is
that these data need to be prelabeled, whereas such labeling is difficult and its results are estimates. In
addition, the distribution of incoming events is highly imbalanced. Firstly, there is an imbalance in the
types of events, since the number of detected gamma quanta is significantly less than the number of
protons. Secondly, the energy distribution of particles of the same type is also imbalanced, since high-
energy particles are extremely rare. This imbalance results in poorly trained classifiers that, once trained, do
not handle rare events correctly. Using only conventional Monte Carlo event simulation methods to solve
this problem is possible, but extremely resource-intensive and time-consuming. To address this issue,
we propose to perform data augmentation with artificially generated events of the desired type and energy
using conditional generative adversarial networks (cGANs), distinguishing classes by energy values. In the
paper, we describe a simple algorithm for generating balanced data sets using cGANs. Thus, the proposed
neural network model produces both imbalanced data sets for physical analysis as well as balanced data
sets suitable for training other neural networks.
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1. INTRODUCTION

The TAIGA experiment (Tunka Advanced Instru-
ment for cosmic ray physics and Gamma Astronomy)
[1] is a complex system for ground-based gamma-
ray astronomy which includes detectors of different
types. The TAIGA-IACT detectors [2] are Imaging
Atmospheric Cherenkov Telescopes (IACTs) used to
track extensive air showers (EASs) initiated by high
energy gamma rays or charged cosmic rays (mostly
protons). An EAS detected by an IACT we will call
an event, while the data recorded by the telescope’s
camera will be called an image of the event. Ac-
cording to the type of primary particle that initiated
the EAS, there are two types of events: an event
initiated by a gamma quantum (gamma event) and
an event initiated by a proton (proton event). De-
termining the type of event (classification) is one of
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the most important tasks in processing IACT data.
Like other Cherenkov telescopes [3–6], the TAIGA-
IACT detectors produce a huge amount of images
that must be classified automatically, ideally in real
time. Currently, solutions based on machine learning
(ML) are increasingly being used to solve classifica-
tion problems. An important point in this approach is
that training neural network classifiers requires prop-
erly prepared and labeled training data sets. Such
data sets can be created based on both real data and
artificially generated (synthetic) data.

When training a classifier the major issue is the
imbalanced learning problem [7]. Saying that a data
set is imbalanced with respect to some parameter
means that the distribution of this parameter is far
from uniform. In classification terms, an imbalanced
training set means that some events that the clas-
sifier learns to recognize are rare. Therefore, such
events have little effect on the learning process, and,
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accordingly, the classifier will not be able to recognize
them correctly. To correct the imbalance, an approach
called data augmentation [8] can be used. Data aug-
mentation is a set of techniques applied to a data set
used to create new samples that are slightly different
from the existing ones. The simplest examples of
such techniques are rotations, translations, cropping
and flipping of images. A more complex and very
promising approach to data augmentation involves
the use of ML models to generate new samples by
learning from existing samples. In astrophysics, ML-
based data augmentation has already been success-
fully applied to generate synthetic light curves from
variable stars [9], as well as to improve the exoplanet
detection [10] and variable star classification accuracy
[11]. In this paper, we also focus on ML-based data
augmentation, aiming to apply it to IACT data.

For real IACT data, the problem of imbalanced
training is acute. Firstly, in real IACT data there is
an imbalance in the types of events, since the number
of detected gamma quanta is significantly less than
the number of protons. Secondly, the energy dis-
tribution for events of the same type is also imbal-
anced, since high-energy events are rare phenomena.
This is why synthetic IACT data, whose distribution
varies depending on the task and the image gener-
ation method, is often preferred for training neural
networks.

A well-established method for generating syn-
thetic images is using special software that performs
realistic Monte Carlo simulations of both the EAS
evolution [12] and the response of the IACT system
[13]. By generating artificial data in this way, one
can obtain the required number of events of a given
type and with a given energy, so there is no problem
of imbalanced learning. Therefore, using such model
data to train classifiers seems to be an acceptable op-
tion. However, the problem is that the computational
models of the underlying physical processes are very
resource intensive and time-consuming. For some
analysis purposes, the detailed information provided
by the Monte Carlo simulation is redundant, so less
complex and more efficient generation methods, such
as ML-based generative models can be used.

When generating images using ML, the resulting
data sets can be either balanced or imbalanced, de-
pending on the training procedure. For non-ML ap-
plications such as physical analysis, the distribution
of the generated sample is required to be the same
as the distribution of the real IACT data, i.e. non-
uniform. Therefore, some machine learning solutions
[14, 15] focus on reproducing the distribution of the
real IACT data in a sample of artificially generated
events. However, as mentioned above, using such
imbalanced data to train ML classifiers is inefficient.
One way to solve the issue is to train another one
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Fig. 1. Example of a hexagonal image recorded by the
TAIGA-IACT detector.

neural network to generate balanced sets, but this is
hardly an optimal solution, because one will always
have to keep two networks for generating balanced
and unbalanced sets. Another way is to train one
common network, generate an excess number of im-
ages with it, and then form data sets with the required
distributions by discarding those images that do not
have the desired parameters. Although the ML gen-
eration is very fast, the disadvantage of this method
is a decrease in the final generation speed. This is
due to the fact that to perform the selection, all the
generated images have to be processed to determine
their parameters, which also takes time.

In this paper, we propose a solution to quickly gen-
erate both imbalanced and balanced data sets of IACT
images using a single conditional generative adver-
sarial network (cGAN) [16]. We describe a method
for training such a cGAN, as well as an algorithm for
data augmentation using this same network to tackle
the imbalance in energy for gamma events.

2. IACT IMAGES AND ITS PARAMETERS

The ground-based TAIGA-IACT detector records
flashes of Cherenkov light using a camera that is
a hexagonal array of about 600 photomultipliers
(PMTs). Each PMT produces one image pixel, and
all the pixels form a hexagonal image of the event (see
Fig. 1).

The colored spot on each image is the region of
the triggered PMTs. The colored spot has a more or
less elliptical shape for both gamma events and proton
events. However, primary particles of different types
generate air showers that develop in different ways,
so the gamma images are slightly different from the
proton ones. In addition, both the energy value of
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Fig. 2. The energy distribution of the training set.

the primary particle and the arrival direction affect the
brightness, shape and location of the recorded ellipse.
Thus, the parameters of the primary particle, such as
its type, energy and arrival direction can be estimated
from the appearance of the image. It should be noted
that the estimation of these parameters is approx-
imate, although it is correlated with the geometric
parameters of the image. The geometric parameters
of the image, the so-called Hillas parameters [17], can
be calculated exactly for each image. In this work we
will mention the following two parameters:

• the image size parameter, which is the overall
brightness of the image, which is the total sum
of the values of all the triggered pixels;

• the distance parameter, which is the distance
between the centroid of the recorded ellipse and
the center of the camera’s field of view.

3. GENERATING BOTH BALANCED
AND IMBALANCED DATA SETS

WITH A SINGLE cGAN

In general, the proposed approach to generate
both balanced and imbalanced data sets with a single
cGAN can be summarized as follows. First, an
imbalanced set of artificial Monte Carlo-simulated
gamma images similar to real data recorder by
TAIGA-IACT was used for training a cGAN. Using
Monte Carlo simulated images for training has the
advantage that the energy and other parameters of the
corresponding events are exactly known. The training
set was divided into classes artificially, based on the
energy value of the primary particle that produced the
EAS. The division was done in such a way that each
class had the same number of images. Once trained,
a cGAN with such classes produces an imbalanced
set of images that is close to the training set when

asked to generate the same number of images of each
class. Data augmentation can be done by calculating
the number of images for different classes that need
to be generated in order for the final distribution to
be uniform. That is, to get a balanced set of images
using our cGAN the number of generated images of
each class should be different and should depend of
the class width. The algorithm for calculating the
number of images for each class is given below in this
paper in Section 6.

4. PREPARING INPUT DATA
AND TRAINING THE cGAN

4.1. The Training Set

For training we used a sample of images ob-
tained using TAIGA Monte Carlo simulation soft-
ware [12, 13]. The sample contains 40 000 images
of gamma events with energies ranging from 0.5 to
50 TeV. This sample closely simulates the flow of
real gamma events, which means that the energy
distribution of this data set is extremely imbalanced
(see Fig. 2).

4.2. Dividing IACT Images into Different Classes

Using the cGAN model implies a discrete ap-
proach, in which all images are divided into separate
classes depending on the value of some parameter
(or several parameters) of the image. In our previous
work [14, 15] we divided images into classes based on
the values of the image size Hillas parameter. This
was done because the image size is easy to calculate
for any image, and it is correlated with the energy of
the primary particle. This was a good first approx-
imation, but it is the energy of the primary particle
that is the parameter of interest. That’s why in this
work, we trained our cGAN on images divided into
classes based on the energy itself. Just like the size
value, the energy value is not limited to a discrete
set of numbers, it can be any real number within a
certain range. As can be seen in Fig. 2, the energy
distribution has only one maximum, so we cannot
distinguish several energy classes naturally, we can
only do it artificially. In our previous work, we showed
that the network learns better when each class con-
tains the same number of images [14]. So, initially,
we divided our training set of 40 000 images into
100 energy classes, containing 400 images in each
class. Our first results showed that, unlike size-based
class dividing, energy-based class dividing results in
incorrect cGAN learning, namely, the network does
not recognize the difference between classes. This
can be explained by the fact that, depending on the
angle of arrival of the EAS, images with the same en-
ergy often look very different, and vice versa, images
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with different energies can sometimes look similar. To
overcome this issue, when dividing into classes, we
take into account not only the energy, but also the
value of the distance Hillas parameter. The distance
parameter was chosen because it is correlated with
the direction of arrival of the EAS. So, in the training
sample, we divided 10 classes by energy, and for each
of these classes, we divided 10 classes by distance.
In total, we got 100 classes with the same number of
images. Our further research showed that with such
an artificial division, for stable network training it is
important that both parameters (energy and distance)
change from class to class gradually, and not abruptly.
To achieve this, we consider the set of classes as a
two-dimensional array having 10 rows for energy and
10 columns for distance. To assign class numbers, we
need to traverse the array in a snake-like pattern, as
shown in Fig. 3. As can be seen from the figure, with
this method of assigning class numbers for any two
neighboring classes, both the energy and the distance
do not differ much.

In more detail, the algorithm for assigning class
numbers is as follows. First, all images were sorted by
energy in ascending order and divided into
10 classes so that each class had the same number of
images (4000 images in our case). Thus, each energy
class corresponds to a certain range of energies and
has a serial number i (i from 1 to 10), where i = 1
corresponds to the minimum energy range, and i =
10 corresponds to the maximum one. Then, for each
class i, the following steps were performed.

All images of the energy class i were sorted by dis-
tance in ascending order and divided into 10 classes
so that each class had the same number of images
(400 images in our case). Thus, each distance class
corresponds to a certain range of distances and has
a serial number j (j from 1 to 10), where j = 1 cor-
responds to the minimum distance range, and j = 10
corresponds to the maximum one. It should be noted
that for different energy classes the distance ranges
corresponding to the same j numbers are generally
different. The final class numbers k (k from 1 to 100)
are determined as follows:

k = 10(i − 1) + j, for oddi;

k = 10(i − 1) + (10 − j + 1)

= 10i− j + 1, for eveni.

Using energy and distance to divide the training
set into classes, and assigning class numbers in a
snakelike pattern significantly improved the results of
network training compared to our first results.
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Fig. 3. Assigning class numbers in a snakelike pattern,
i is an energy class number, j is a distance class number.

4.3. Training Data Set Preprocessing

It is worth noting that preprocessing of the train-
ing set is extremely important for generating images
similar to those recorded by IACT. When preparing
the training sample images, we applied cleaning, co-
ordinate transformation, image resizing and pixel val-
ues normalization. Normally, Monte Carlo images,
as well as real data, contain noise from the night sky
background fluctuations and electronic components.
Image cleaning [18] is a conventional procedure to
remove such noise thus leaving only images produced
by a shower of secondary particles. In theory, cGANs
can generate noisy images as well as cleaned ones.
Our previous results [19–21] show that our network
reproduces cleaned images better. In order to teach
our cGAN to generate cleaned images, we had to
clean the images from the training set. As noted
earlier, the IACT images have a hexagonal structure.
However, the current high performance cGAN im-
plementations are designed for square images. That
is why first, we generated rectangular images from
hexagonal ones using axial coordinate transformation
[22]. As a result, we got images of 31 by 30 pixels.
Then, to make the images square, we resized each
image to 32 by 32 pixels by adding two columns of
zeros to the right and one row of zeros to the bottom.
Since the training set contains images with widely
varying pixel values, we had to switch to a logarithmic
scale by applying the logarithm function ln(1 + x)
to each pixel value of each image. Then, the pixel
values were scaled to the range [0, 1] to match the
output of the generator model. This is how we get a
set of square grayscale images which we feed to the
discriminator input during the training of our cGAN.
An example of the original image and the image after
preprocessing is shown in Fig. 4.

4.4. The Proposed Neural Network Model

The proposed neural network model consists of
three interacting components, each of which was
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Fig. 4. A hexagonal image and the corresponding square
image resulting from preprocessing.

trained separately: (1) a cGAN for image generation,
(2) a neural network to determine the probability that
an image is a gamma image (gamma likelihood) [23],
and (3) a neural network for energy reconstruction
[24]. Neural networks 2 and 3 are results of the
previous work and their architecture is beyond the
scope of this paper. Here, we focus on the architecture
of the cGAN network. The cGAN consists of a
discriminator and a generator, and we will describe
the architecture of each of these networks separately.

The architecture of the discriminator is shown in
Fig. 5. The discriminator is a convolutional neural
network consisting of a convolutional layer with 3× 3
filters followed by a dense (fully connected) layer with
64 neurons in it. The convolutional layers use a leaky
ReLU function with alpha is 0.2 as the activation
function. The output layer uses sigmoid as the ac-
tivation function.

The architecture of the generator is shown in
Fig. 6. The generator takes a random vector and
a desired class number as input, and then uses
transpose convolution to upsample until it gets an
image of the required size. All layers use a leaky
ReLU function with alpha is 0.2 as the activation
function. The output layer has one 6× 6 filter and
uses hyperbolic tangent as the activation function.

4.5. cGAN Training
We used the above mentioned 100 artificial classes

while training our cGAN. We have implemented the
network with the proposed architecture using the
TensorFlow [25] software package. cGAN train-
ing at the GPU Tesla P100 with a batch size of
256 images and 500 epochs took about 6 h. After
training, generation of 1000 events of any class takes
about 8 s. However, most of this time is spent
loading libraries and the network model itself, so for
comparison, generating 10 000 events takes 12 s,
and generating 20 000 events takes 16 s. The con-
ventional Monte Carlo simulation software produces
very accurate results, but is quite slow, generating
an average of 1000 images per hour. Using cGAN,
therefore, speeds up the image generation process by
several thousand times.

4.6. Training Results

The trained cGAN outputs square grayscale im-
ages with pixel values ranging from 0 to 1, exactly the
same format as the training set. To get the image in
the original format we first reverse-scale the images
from the range [0, 1] using the previously stored max-
imum pixel value of the training set. We then convert
the logarithmic pixel values to linear ones by applying
an exponential function to each pixel value of each
image: exp(x)− 1. Then we discard the extra pixels
on the right and bottom of each image. Finally, the
generated images are converted back to a hexagonal
form. The examples of the generated images are
shown in Fig. 7.

We checked the quality of the generated images
using a separate neural network to determine the
gamma likelihood. This check showed that over 98%
of the generated images are gamma images with a
probability greater than 95%, and less than 1% of the
generated images were misinterpreted as proton im-
ages. In further processing, images with low gamma
likelihood are discarded.

5. ENERGY RECONSTRUCTION
FOR A SAMPLE OF GENERATED IMAGES

To generate the imbalanced data set, we used the
generator to create 400 images per each class, and
this number was exactly the same as the number
of images in each of the training set classes. So,
we got 100 samples of 400 images and combined
them into one larger sample, which gave us a total of
40 000 images. For this total sample, we used a
separate neural network for energy reconstruction
and then built a energy distribution for the sample.
It should be noted, that the distance parameter is
auxiliary, needed only for better network training,
therefore further results are given only for the energy
distribution. To check the energy distribution for the
generated sample, we compared three energy distri-
butions: (1) the exactly known energy distribution of
the training set, (2) the energy estimate distribution
for the training set obtained by the neural network,
and (3) the energy estimate distribution for the gener-
ated sample obtained by the neural network. The dis-
tribution 2 is used to additionally check the quality of
energy reconstruction by the neural network. These
three energy distribution are shown in Fig. 8.

When we compared the exactly known energy dis-
tribution for the training set and the reconstructed en-
ergy distribution for the cGAN-generated sample, we
found that the chi-square test statistic is 1513 while
the critical value corresponding for a 5% significance
level with 100 degrees of freedom is 124.34. However,
comparing the reconstructed energy distribution for
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Fig. 5. Architecture of the discriminator.

the training set and the reconstructed energy distri-
bution for the cGAN-generated sample we found that
the chi-square test statistic decreased to a value of
180. Although the chi-square test still shows that
the difference is significant, the value of this criterion
has decreased by a factor of eight, becoming much
closer to the critical value. This result shows that the
energy distribution of the generated sample is close
enough to the energy distribution of the training set,
but we need to further improve the quality of energy
reconstruction.

6. PROPOSED METHOD FOR DATA
AUGMENTATION

The task of augmentation is to generate a new
sample so that the distribution by the parameter of
interest is uniform. In this paper, we propose to
generate a distribution close to uniform using a net-
work trained on an unbalanced set, determining the
number of images to be generated depending on the
class width. For classes with wider bounds (such
classes contain rare events), the number of images
should be proportionally increased, respectively, for
classes with narrower bounds, the number of images
should be proportionally reduced. Let us consider the
simplest case, when images are divided into classes
only using one parameter, for example, energy. A
diagram illustrating the augmentation procedure is
presented in Fig. 9. In this example, the distribution
is divided into 3 energy classes.

Let there be an original imbalanced energy dis-
tribution, divided into classes so that each class i
contains the same number of images. In Fig. 9, the
total number of images in class i (i = 1–3, where
3 is the total number of energy classes) is the area
of the corresponding rectangle So

i . For the original
distribution, all So

i are equal to each other. Let us
denote the total number of images in the original
sample as So, So =

∑
So
i .

For augmentation, we need to generate a new
sample of Su images so that the energy distribution is

uniform. Figure 9 shows an example where Su = So,
but Su can take any value and does not depend on
So. Let us denote as Su

i the total number of images
of class i that need to be generated, with Su =

∑
Su
i .

For a uniform distribution, the number of images per
unit-length energy interval must be the same for all
energy values. In Fig. 9, the corresponding value
is designated as nu. It is easy to determine that
nu = Su/(Emax − Emin), where Emin and Emax are,
respectively, the minimum and maximum values of
the energy. For the example shown in Fig. 9 Emin =
E0 and Emax = E3. Accordingly, Su

i will be equal to
the product of the value of nu and the class width
(Ei − Ei−1), where Ei−1, Ei are bounds of the ith
energy class:

Su
i = Su (Ei − Ei−1) /

(
Emax − Emin) .

Let Ki = (Ei − Ei−1) /
(
Emax − Emin

)
, thenSu

i =
SuKi.

Let us return to the more general case considered
in this paper, where the division into classes is made
using two parameters (energy and distance), and
there are 10 energy classes with 10 distance classes
in each. To determine the number of images in each
class we introduce separate coefficients KE

i (i = 1–
10) for energy and KD

i,j (i = 1–10, j = 1–10) for
distance, such that:

KE
i = (Ei − Ei−1)/

(
Emax − Emin) ,

where i = 1–10, Ei−1, Ei are bounds of the ith
energy class, and Emin, Emax are the minimum and
maximum values of the energy.

KD
i,j = (Di,j −Di,j−1)/

(
Dmax

i −Dmin
i

)
,

where i = 1–10, j =1–10, Di,j−1, Di,j are bounds
of the jth distance class for the ith energy class, and
Dmin

i , Dmax
i are the minimum and maximum values of

distance for the ith energy class.

Then we calculate the number of images for each
class by multiplying the total number of the images
to be generated by the corresponding coefficients KE

i

and KD
i,j :

Su
i,j = SuKE

i KD
i,j, i = 1−10, j = 1−10.

An additional advantage of the proposed approach
is the fact that the coefficients depend only on the
class bounds, and therefore for a given cGAN they
remain constant and can be calculated only once,
which further increases the savings in machine time.
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Fig. 6. Architecture of the generator.

Fig. 7. Examples of generated images.
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Fig. 8. Comparison of three imbalanced energy distribu-
tions: (1) the exactly known energy distribution of the
training set (blue), (2) the energy estimate distribution
for the training set (green), and (3) the energy estimate
distribution for the generated sample (red).

7. DATA AUGMENTATION RESULTS

We calculated the coefficients KE
i and KD

i,j and
the corresponding number of images for all our
100 classes as described in Section 6, then generated
all of these images and reconstructed the energy
for them. The energy distribution summed over all

classes for this augmented data sample is shown in
Fig. 10.

As can be seen, the energy distribution is not
uniform (the chi-square test statistic is about 4500),
but is much closer to a uniform distribution than the
imbalanced distribution shown in Fig. 8. The shape
of this distribution can be explained as follows. Since
the division into classes was made artificially, the
energy distribution for a certain class of the generated
sample is not uniform within the class bounds, but
normal. Moreover, since the neural network performs
not only interpolation, but also extrapolation of data,
the distribution goes beyond the class bounds. When
many classes have close bounds and the values for
these classes are added together, the overall distri-
bution looks uniform, as can be seen in Fig. 10, in
the range from 5 to 40 TeV. However, the very high
and very low energy classes have too wide bounds
and in these energy ranges only they contribute to
the total distribution. Because of this, for the energy
range from 0.5 to 5 TeV, as well as from 40 to 50 TeV,
the distribution differs significantly from uniform. In
this work, we did not increase the number of classes
because 400 images in one class is already quite a
few. But if we increase the size of the training set
and the number of energy classes, the class bounds
will become closer, and the energy range in which
the distribution is close to uniform will increase. But
even now, if we take only the energy range from 5
to 40 TeV, where the distribution is close to uniform,
we can already use the obtained results to train other
neural networks.

8. CONCLUSIONS

Simulating gamma images for the TAIGA-IACT
experiment with a cGAN trained using energy-
distance based class dividing yields promising results,
as about 98% of the generated gamma images are
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Fig. 9. A diagram illustrating the augmentation procedure.

recognized as correct ones by third-party software
with a probability of more than 95%. At the same
time, the rate of generation of such images using
this cGAN is several thousand times higher than the
rate of generation by the conventional Monte Carlo
method.

The approach proposed in this paper allows for
the rapid generation of both balanced and imbalanced
data sets using a single network. Namely, we can
generate images with either the original incoming
energy distribution or perform data augmentation to
obtain a nearly uniform energy distribution. In both
cases, the corresponding energy distribution of the
generated sample is relatively close to the desired
energy distribution.

However, for both balanced and unbalanced data
sets, the chi-square test shows that the difference in
distributions is significant. On the other hand, vali-
dation of the training results of our network depends
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Fig. 10. The energy distribution for the sample of aug-
mented data.

heavily on the methods for reconstructing the energy
value of the generated images. For example, when
we compared the exactly known energy distribution
for the training set and the reconstructed energy dis-
tribution for the cGAN-generated sample, the chi-
square test statistic was about 1500. But compar-
ing the reconstructed energy distribution for the very
same training set and the reconstructed energy dis-
tribution for the cGAN-generated sample we found
that the chi-square test value statistic decreased to
a value of 180. We expect that by improving the
energy reconstruction, we will also obtain a closer
distribution of the energy of the generated sample to
the distribution of the training set. We also expect
that increasing the number of training set images and,
accordingly, increasing the total number of classes
can also further improve the generation results, es-
pecially when generating a balanced data set.

Also it should be noted that there are other meth-
ods for handling class imbalance [26]. Some of them
focus on altering the training data to decrease im-
balance, while others involve modifying the learning
or decision process to increase sensitivity towards
the minority class, for example by taking a class
penalty or weight into consideration. In our future
work, we plan to investigate the applicability of these
approaches to our problem.
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M. Büker, M. Bruckner, A. Chiavassa,
O. B. Chvalaev, A. V. Gafarov, N. Gorbunov,
V. Grebenyuk, O. A. Gress, A. Grinyuk,
O. G. Grishin, A. N. Dyachok, S. N. Epimakhov,
T. V. Eremin, D. Horns, A. L. Ivanova,
N. N. Kalmykov, N. I. Karpov, Y. A. Kazarina,
V. V. Kindin, N. V. Kirichkov, S. N. Kiryuhin,
R. P. Kokouli, K. G. Kompaniets, E. N. Konstantinov,
A. V. Korobchenko, E. E. Korosteleva, V. A. Kozhin,
M. Kunnas, et al., J. Phys.: Conf. Ser. 675, 032037
(2016).
https://doi.org/10.1088/1742-6596/675/3/032037
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