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Abstract—This paper addresses the challenge of improving clustering accuracy of image data, particularly
focusing on feature representations extracted from convolutional deep neural networks (CNNs). Traditional
spectral clustering methods often struggle with high dimension features tensors generated by CNNs like
the VGG model. To overcome these limitations, this work proposes a novel approach that enhances
spectral clustering by utilizing sparse graph representations (hyperbolic embedding) based on quasi-cyclic
low-density parity check (QC-LDPC) and multiedge type (MET) QC-LDPC codes. These graphs are
constructed using progressive edge growth (PEG), simulated annealing methods. The paper tackles
the specific problem of effectively clustering high-dimensional, sparse image features by modeling their
interactions with a random-bond Ising model (RBIM). The optimization process leverages Nishimori
temperature estimation to assign weights to graph edges based on image features, leading to more accurate
grouping of images into distinct clusters. This approach can be applied to various tasks, including
classification. The proposed method not only improves clustering accuracy but also reduces the number of
required parameters. It achieves a 17.39% improvement in accuracy (90.60%) compared to state-of-the-
art Erdõs–Rényi graphs (73.21%), which lack the hardware-efficient structure of QC-LDPC graphs. By
utilizing sparse feature parameters, an efficient MET QC-LDPC multigraph is created that outperforms
conventional techniques such as mean-field approximation and Laplacian methods in graph clustering,
binary classification. These findings highlight the potential of this approach for a wide range of applications,
including image clustering, neural network pruning, data representation, and neuron activation pattern
prediction.
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1. INTRODUCTION

Graph clustering is critical in machine learning
tasks such as image classification, pattern recogni-
tion, and data mining. Numerous methods, many
rooted in statistical physics, have been developed to
tackle this problem, including Ising spin glass spec-
tral clustering [1, 2], mean field approximation (MFA)
[3], the Laplacian Method [4, 5], and Nishimori tem-
perature spectral clustering [6, 7]. These techniques
focus on partitioning graph nodes into clusters that
reveal meaningful data patterns.

Recent advancements in hyperbolic embedding
have shown promise, particularly for large-scale

*E-mail: L@Lcrypto.com

graphs with hierarchical or treelike structures, com-
monly seen in image data. Hyperbolic spaces,
with their exponential expansion, allow for efficient
modeling of these complex graphs, enhancing tasks
like image classification by leveraging hierarchical
relationships [8, 9]. However, the application of
hyperbolic models to sparse, high-dimensional data,
such as features produced by convolutional neural
networks (CNNs) like VGG [10], remains a chal-
lenge.

On the other hand, supervised methods like
ResNet-50 and EfficientNet, which utilize more
advanced CNNs compared to VGG [11, 12], as well
as visual transformers [13, 14] and hyperbolic visual
hierarchy encoding [8], still struggle to achieve high
classification accuracy. These approaches often re-
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quire computationally expensive training, particularly
in the case of visual transformers.

Treelike low-density parity-check (LDPC) codes
offer a compelling alternative for clustering due to
their scale-free structure, small-world properties, and
higher clustering coefficient. Unlike Erdös—Rényi
(ER) graphs, which exhibit Poisson degree distribu-
tions [7], LDPC graphs can model power-law degree
distributions, reflecting the presence of “superpixel
hub” nodes—an important feature in image data. The
higher clustering coefficient in LDPC graphs also
enables more efficient clustering through dense local
node interconnections, making them suitable for han-
dling sparse feature spaces.

LDPC codes, typically known for their use in
error-correcting codes, provide sparse graph struc-
tures with high connectivity but low density, making
them ideal candidates for hyperbolic embedding and
spectral clustering. By combining LDPC graphs with
hyperbolic embeddings, we can create a multigraph
structure that preserves sparsity while capturing hier-
archical relationships, leading to improved clustering
performance on high-dimensional image features
extracted by CNNs.

This paper explores the integration of Nishimori
temperature estimation within this framework to
enhance spectral clustering on LDPC-based sparse
graphs. Nishimori temperature, derived from the ran-
dom bond Ising model (RBIM), optimizes clustering
by tuning the system at a critical phase transition be-
tween ordered (ferromagnetic) and disordered (para-
magnetic) states [15, 16]. When applied to LDPC
graph representations, this approach ensures robust
and efficient clustering of sparse, high-dimensional
image data.

In summary, we propose a novel method that inte-
grates hyperbolic embedding, LDPC graph construc-
tion, and Nishimori temperature estimation within
the RBIM spectral clustering framework. This ap-
proach significantly improves clustering accuracy and
reduces computational complexity by leveraging the
strengths of hyperbolic geometry, LDPC sparsity, and
RBIM optimization.

The following sections delve into the theoretical
foundations of the random bond Ising model, the
Bethe–Hessian matrix, and Nishimori temperature,
as well as key concepts from hyperbolic embedding
and LDPC graph theory.

2. RANDOM BOND ISING MODELS

The Ising model is a fundamental tool in statis-
tical physics used to study the magnetic properties
of materials. It posits that magnetic moments, or
spins, interact solely with their nearest neighbors.

This model can be generalized to arbitrary graphs,
providing a versatile framework for analyzing complex
systems.

Definition 1. RBIM. Consider a ζ(ν, ε)-graph,
where ν represents the set of vertices corresponding
to spins, and ε represents the set of edges corre-
sponding to interactions between spins. Each edge
(i, j) is assigned a weight Jij , which determines the
interaction strength between spins i and j. The spin
vector s = {−1, 1}n on the graph is a random vector
with a Boltzmann distribution:

μ(s) =
e−βHJ (s)

ZJ,β
,

where β is a positive number, ZJ,β is the normal-
ization coefficient, and the Hamiltonian of the Ising
model on the graph ζ is given by:

HJ (s) = −
∑

(ij)∈ε
Jijsisj = −sTJs.

In the Ising model, the goal is to find a config-
uration of spins s that minimizes the Hamiltonian
HJ (s). The clustering problem on graphs can be
transformed into an optimization problem of the Ising
model by assigning weights to the graph edges based
on vertex similarities. For instance, in the case of
binary classification of graph vertices, the weight of
the edge (i, j) can be defined as:

Jij =

{
1, if si = sj

−1, if si �= sj.
(1)

This corresponds to an Ising model of the ζ-graph
where spins corresponding to vertices in the same
cluster interact with a positive force, and spins corre-
sponding to vertices in different clusters interact with
a negative force.

The RBIM energy-based model (EBM) uses a
Gibbs–Boltzmann density [17]:

p(x; θ) =
1

Z(θ)
exp{−U(x; θ)},

where x ∈ R
D represents an image signal, U(x; θ)

is a (convolutional, ConvNet [18]) neural network
with weights θ and a scalar output, and Z(θ) is the
intractable normalizing constant. Training involves
approximating p(x; θ∗) ≈ q(x) using i.i.d. samples
from the data distribution q(x). Such models allow for
the encoding of images using ground states of Ising
models.
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2.1. Nishimori Temperature and Phase Transition

The Nishimori temperature is the critical temper-
ature at which a phase transition occurs in the Ising
model. This temperature is crucial in the study of
spin glasses and has significant applications in op-
timization and machine learning. For the Ising model
on a graph, the Nishimori temperature is defined as
TN = 1

βN
. Consider the following definition, [7]:

Definition 2. Let ζ(ν, ε) be a graph, where ν is
the set of vertices and ε is the set of edges, and let J
be a matrix corresponding to the graph. The nonzero
elements of the matrix are generated according to the
rule:

P (x) = p(|x|)eβNx,

where p(|x|) is a nonnegative function satisfying the
normalization condition

∫
p0(|x|)eβNx dx = 1, and

βN > 0 is the inverse of Nishimori temperature.

For example, in the Edwards–Anderson model for
normally distributed weights in graph vertex classifi-
cation problems, βN is defined as :

P (x) =
1√
2πν2

exp

{
−(x− J0)

2

2ν2

}
,

p0(|x|) =
1√
2πν2

exp

{
−x2 − J2

0

2ν2

}
,

βN =
J0
ν2

, J0 = E[J ],Var[J ] = ν. (2)

Above the Nishimori temperature, the Ising model
enters a paramagnetic phase where all spins are
uncorrelated and randomly oriented. Below the
Nishimori temperature, the model transitions into
a spin glass state, where the spins are frozen in
configurations corresponding to local minima of the
Hamiltonian. Under the Nishimori temperature, let
A ∈ {0, 1}n×n be the symmetric adjacency matrix
of ζ(ν, ε), defined by Aij = 1 if (ij) ∈ ε, and Aij= 0

otherwise. Let D ∈ N
n×n be the diagonal degree

matrix D = diag(A1n), easily obtains that, [7]:

E
[
HβN,J

]
= In + E

[
tanh(βJij)

1− tanh2(βJij)

]
(D − A) .

By varying the temperature T , we can observe a phase
transition, as illustrated in Fig. 1. In the context
of graph clustering, the Nishimori temperature rep-
resents the phase transition point between a regime
where vertices are uncorrelated and a regime where
vertices cluster based on their similarities.

N
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Fig. 1. Phase diagram of the RBIM for Jij ∈ {−1, 1}.
The x-axis ranges from 1

2
for βN = 0 to 1 for βN → ∞.

The y-axis represents T , the inverse of β. The dashed
green line corresponds to the inverse of βF, the dash-
dotted blue line to the inverse of βSG, and the solid red
line to the inverse of βN, [7].

2.2. Bethe Energy and Bethe–Hessian
Let us introduce the free energy FJβ for μ(s) in the

Boltzmann distribution and its Bethe approximation
F̃Jβ(q) for a set of parameters q:

FJβ =
∑

s

μ(s) (βHJ(s) + lnμ(s)) ,

F̃Jβ(q) =
∑

s

pq(s) (βHJ(s) + ln pq(s)) ,

where s denotes a particular state of the system, μ(s)
is the marginal probability of the system being in state
s according to the Boltzmann distribution.

The free energy FJβ generates moments of the
Boltzmann distribution (Ising), but it cannot gen-
erally be calculated exactly. The variational Bethe
free energy F̃Jβ is an approximation. Minimizing F̃Jβ

with respect to q for a parameterized family of dis-
tributions pq(s) yields a minimum of the Kullback–
Leibler divergence for the optimal approximation
of the free energy. The mean and covariance-
parameterized distribution pq = pm,χ is defined as
follows:

pm,χ =
∏

(ij)∈ε

1 +misi +mjsj + χijsisj
4

,

n∏

i=1

[
1 +misi

2

]1−di

,

where mi and χij are the averages of si and sij by
distribution, and di = |{j : (ij) ∈ ε}| is the degree of
the ith node.

Combining the expressions for free energy and its
approximation, we find that F̃Bethe

Jβ (m,χ)
∣∣
m=0

= 0,
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indicating that the paramagnetic point always deliv-
ers a minimum of Bethe energy.

∂2F̃Bethe
Jβ

∂mi∂mj

∣∣∣∣∣
m=0

= δij

(
1 +

∑

k∈∂i

χ2
ik

1− χ2
ik

)
− χik

1− χ2
ik

,

where δij is the Kronecker delta, which is 1 if i = j
and 0 otherwise, k ∈ ∂i refers to the set of nodes
(or variables) k that are neighbors of the node i in
a graphical model or network. This set is often
called the “neighborhood” of i. The expression

∑
k∈∂i

means that the summation is taken over all neighbors
k of node i. The first term involves a sum over the
neighbors k of node i, accounting for the contribu-
tions from each neighbor to the diagonal part of the
Hessian matrix Hβ,J . The second term represents
the off-diagonal elements, which are associated with
the interactions between different nodes i and j. In
summary, k ∈ ∂i denotes all the nodes that are di-
rectly connected to node i in the graph, and these
neighboring nodes contribute to the calculation of the
Hessian in the context of the Bethe approximation.

By calculating the gradient of the Bethe energy
with respect to χ and assuming χij = tanh(βJij), we
obtain an expression for the Hessian approximation:

Hβ,J = δij

(
1 +

∑

k∈∂i

tanh2(βJik)

1− tanh2(βJik)

)

− tanh(βJij)

1− tanh2(βJij)
.

The Hessian matrix Hβ,J approximates the second
derivative (or curvature) of the energy function with
respect to the parameters. The given expression is an
approximation that results from applying the Bethe
approximation. The Kronecker delta ensures that
the summation and the additional constant 1 only
affect the diagonal elements, while the off-diagonal
elements are influenced only by the second term.

2.3. Relationship between Nishimori Temperature
and Bethe–Hessian

We can now establish a connection between the
Nishimori temperature and the Bethe–Hessian ma-
trix. It has been shown that at the Nishimori point
βN , the smallest eigenvalue of the matrix Hβ,J is zero.
This property can be used to estimate the Nishimori
temperature by finding the smallest eigenvalue of the
matrix Hβ,J as a function of β and choosing the value

of β for which the smallest eigenvalue is zero (within
some specified accuracy):

β̂N = max
β

(β : γmin(Hβ,J) = 0) ,

where γmin corresponds to the smallest eigenvalue.
This property also allows us to associate the phase

transition in the graph Ising model with the smallest
eigenvalue of the matrix Hβ,J . As mentioned earlier,
in the high-temperature phase, the system is param-
agnetic and the matrix Hβ,J is positive definite. As
the temperature decreases, the system can transition
to the ferromagnetic or spin-glass phase. At the
phase transition point, the smallest eigenvalue of the
matrix Hβ,J becomes zero. This means that the phase
transition point corresponds to the (inverse) Nishi-
mori temperature βN . With all necessary definitions
established, we can now move directly to clustering
the data on the graph.

2.4. RBIM under Sparse Graphs
Sparse graphs can be utilized as ζ(ν, ε)-graphs for

the random bond Ising model (RBIM). In this section,
we explore Erdös–Rényi graphs, LDPC progressive
edge growth (PEG) graphs, and quasi-cyclic simu-
lated annealing graphs.

Erdös–Rényi (ER) graphs, as introduced in [19],
provide a flexible framework for modeling random
networks. An ER graph ζ(ν, ε)=G(n, p) consists of
n vertices where each pair of vertices is connected by
an edge with probability p. On average, such a graph
contains

(n
2

)
p edges. The degree distribution of ver-

tices in an ER graph follows a binomial distribution:

P (deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k,

where n represents the total number of vertices. ER
graphs offer several advantages for our application:
they enable controllable sparsity through the param-
eter p, allowing us to tailor model complexity based
on desired feature reduction levels. Moreover, their
well-understood theoretical properties and inherent
randomness contribute to both interpretability and
robust generalization performance.

Definition 3. LDPC (low-density parity-check)
codes are linear block error-correcting codes denoted
as [N,K], characterized by sparse parity-check ma-
trices H(N−K)×N . The matrix H specifies parity
check equations and can be visualized as a Tanner
graph. For example, the Tanner graph (Fig. 2, left)
corresponding to the parity-check matrix:

H =

⎡

⎢⎢⎢⎣

1 0 1 1 1

1 1 0 0 0

0 1 1 1 1

⎤

⎥⎥⎥⎦ .

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 79 Suppl. 2 2024



ENHANCED IMAGE CLUSTERING S651

Fig. 2. (left) Tanner graph of H parity-check matrix and
(right) multigraph protograph ofH2 parity-check matrix.

Definition 4. Quasi-cyclic low-density parity-
check (QC-LDPC) codes form a subclass with a
quasi-cyclic parity-check matrix H [20]. In an
(N,K) QC-LDPC code, N is the code length (num-
ber of codeword bits), K is the number of message
bits, and the remaining bits are parity bits. The
Tanner graph of a QC-LDPC code is described by the
parity-check matrix HmL×nL, consisting of square
blocks of size L× L that are either zero matrices or
circulant permutation matrices (CPM).

The L× L circulant permutation matrix P is de-
fined as:

Pij =

{
1, if i+ 1 ≡ j mod L

0, otherwise.

The Pk represents the CPM (circularly) shifting
the identity matrix I to the right by k times for any
k, 0 ≤ k ≤ L− 1. Denote the set {0, 1, . . . , L− 1}
by AL. Suppose the matrix HQC of size mL× nL is
defined as:

HQC =

⎡

⎢⎢⎢⎢⎢⎢⎣

Pa11 Pa12 · · · Pa1n

Pa21 Pa22 · · · Pa2n
...

...
. . .

...

Pam1 Pam2 · · · Pamn

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where aij ∈ AL, and L is the circulant size of HQC .
The exponent matrix E(H) is derived from HQC with
assigned place shift values ai,j , and the protograph
matrix M(HQC) is obtained by placing 1 for nonzero
circulant entries and 0 otherwise.

A QC-LDPC code can be represented as a multi-
graph, as shown in Fig. 2 (right), using the parity-
check matrix H2:

H2 =

⎛

⎜⎜⎜⎝

I1 + I2 + I7 I9 I23 0 0

I12 + I37 I19 0 I32 I11 + I12

0 0 I33 0 0

⎞

⎟⎟⎟⎠ ,

where I sum denotes the CPM with weight > 1 used
in multi-edge (MET) QC-LDPC codes. MET QC-
LDPC codes are typically defined by variable and
check node degree distributions [21].

If there is a cycle of length 2l in the Tanner graph
of M(H), it is called a block-cycle of length 2l. Any
block-cycle in M(H) of length 2l corresponds both to
the sequence of 2l CPM’s Pa1 , Pa2 , . . . , Pa2l in H and
sequence of 2l integers a1, a2, ..., a2l in E(H) which
will be called exponent chain. The Tanner graph
exhibits cycles of size l based on the equation

2l∑

i=1

(−1)iai ≡ 0 mod L. (3)

Trapping sets within the Tanner graph, formed
by cycles (block-cycle for QC-LDPC) or cycle
(block-cycle) overlap, consist of a variable nodes
and b odd-degree checks, denoted as a trapping set
TS(a, b). The minimum codeword weight (Hamming
distance), determining the code distance (dmin),
corresponds to TS(a, 0), where a = dmin. Trapping
sets give rise to pseudocodewords [22, 23].

The metric extrinsic message degree (EMD) of a
cycle in the Tanner graph is defined as the number of
check nodes singly connected to the variable nodes
involved in the cycle. The EMD value of a code
is an important characteristic, because each cycle
is a trapping set. The EMD metric estimates how
strongly subgraph of cycle is connected with the rest
of the Tanner graph. Calculation of the Tanner graph
EMD is a hard task, because it requires to determine
if the edge is extrinsic edge or cut edge. Instead
of EMD, approximated cycle EMD (ACE) can be
used, [24, 25]. It is easy to calculate by equation:

ACE(C) =
∑

v∈E(Vc)

(d (v)− 2) ,

where C-cycles in Tanner graph, d(v) is the degree
of the variable node participated in cycle, Vc–the set
of variable nodes in cycle. In [26] proofs that for
a LDPC code with girth g, any cycles of length 2l
has equal ACE and EMD if l < g − 2. For example
for code with girth 6 for all cycles 6, ACE metric
estimation gives the EMD value. It means that fast
calculation ACE gives the same result as EMD. In-
creasing the minimum values (for fixed cycle length)
of EMD (ACE) values effectively eliminates TS. This
means that the detrimental impact of a trapping set
TS(a, b) depends solely on its harm value, calculated
as harm = b

a . Consequently, under this restriction,
focusing on minimizing both the probability of error
within subgraphs and the multiplicity of these harmful
trapping sets is sufficient to construct graphs resilient
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against the most damaging types of suboptimal so-
lutions. In (binary) synapse neural networks, opti-
mization requires a careful balance between treelike
pseudocodewords (TS(a, b)) and Hamming distance
codewords (dmin = a, TS(a, 0)), aiming to maximize
storage capacity α. This trade-off is illustrated in
Figs. 3 and 4, as discussed in [27].

Research demonstrates that slow, dynamic ag-
ing in glassy systems can spontaneously generate
structures resembling equilibrium spin glass so-
lutions [2]. These aging glasses exhibit complex
history-dependent behaviors—deviating from stan-
dard thermodynamic equilibrium. This phenomenon
is often described as a shift from “power-limited” to
“bandwidth-limited regimes” in information theory,
highlighting the system’s increased capacity to store
and process information [28]. A defining characteris-
tic of these systems is their “memory”—the ability to
retain past configurations. This suggests they explore
a larger configuration space with more than two
states (beyond simple spin-up or spin-down). The
q-ary Potts model, an extension of the Ising model
allowing q different spin values, provides a valuable
framework for understanding this expansion. Ap-
plying the principles of the q-ary Potts model opens
exciting possibilities. We can explore sophisticated
graph models like nonbinary LDPC graphs (RBIM),
which better capture the intricate dynamics of mem-
ory and aging seen in glassy systems and related non-
binary synapse neural networks. One key advantage
of these q-ary RBIM is their ability to break cycles
more effectively than binary counterparts, leading to
improved capacity through increased code distance
TS(a, 0) and enhanced capacity (error correction),
[29]. This cycle breaking capability stems from the
careful selection of graphs q-ary variables.

3. RBIM LDPC GRAPH CONSTRUCTION

Increasing dmin = a enhances the network’s ca-
pacity as a ratio of the number of distinguishable
feature vectors to the number of nonzero parame-
ters (number of neurons) to a larger minimum Ham-
ming distance. However, this can also complicate
the process of finding the optimal solution due to a
smaller and more constrained target region. On the
other hand, expanding the treelike structure enlarges
the region of the target extremum but decreases the
distance between local minima. Thus, achieving the
right balance is crucial for optimizing the network’s
performance and robustness. In the original pro-
gressive edge-growth (PEG) algorithm [30], a code
is constructed based on a variable node degree se-
quence. This sequence is determined in advance
using the number of variable nodes N and the variable
node degree sequence Dv ∈ Z

N . The variable node
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Fig. 3. Franz–Parisi potential plotted against the nor-
malized Hamming distance. The inset shows the cou-
pling field’s behavior with respect to distance for α =
0.7. The observed maximum indicates a change in the
concavity of the entropy curve, a feature also present for
other finite values of α [27].

degree sequence specifies the number of nonzero ele-
ments in each column of the parity-check matrix.

A PEG-based algorithm involves two fundamen-
tal procedures: local graph expansion and check node
selection. These procedures are executed sequentially
to construct a Tanner graph that connects symbol and
check nodes edge by edge. During the local graph ex-
pansion, a symbol node’s neighborhood is expanded
to detect and avoid short cycles when adding new
edges. Check nodes that would create cycles are
pruned, and if avoiding a cycle is impossible, only
a subset of candidate check nodes producing the
largest possible cycle remains. The check node se-
lection procedure then reduces this list of candidate
nodes based on the current graph structure. In typical
PEG algorithms, this procedure aims to balance the
check node degrees by selecting candidates with the
lowest check node degree using breadth first search
(BFS). The extrinsic message degree (EMD) and ap-
proximate cycle EMD (ACE) [24, 25] are commonly
used metrics to assess the connectivity of variable
nodes.

The algorithm proposed in this paper enhances the
PEG algorithm by maximizing ACE (PEG + ACE
maximization), as detailed in Algorithm 1, further
we will apply the abbreviation PEG, implementation
available [31]. For the construction of QC-LDPC
graphs and MET QC-LDPC multigraphs, we pro-
pose using simulated annealing method with EMD
and Hamming distance maximization, [32].

The detailed steps of this iterative process are
presented in Algorithm 2. The construction of QC-
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Algorithm 1. Progressive edge growth (PEG) with
ACE maximization

Input: Number of variable nodes N , number of check
nodes M , variable node v degree sequence Dv ∈ Z

N .
Output: Parity-check matrix H ∈ {0, 1}M×N .

Initialize the matrix H ← 0M×N .
for v ← 1 to Ndo

for k ← 1 to Dv(v) do
if k = 1 then

Find c ∈ C, C = {c |
∑

j Hc,j is minimum}.
Randomly select check node c∗ ∈ C.
Set Hc∗,v ← 1.
Update auxiliary arrays

else
Initialize BFS tree with root node v.
Perform BFS expansion from node v.
while Tree expansion is possible do

Mark visited variable and check nodes
Add unvisited v to the current level
if �v which added ¬∀c are included then

Find check node c∗ with min. weight
Randomly select among candidates
Set Hc∗,v ← 1
break

end if
Add unvisited c connected to new v
if All check nodes are included then

Select check node c∗ that max ACE.
else

Randomly select c∗ from candidates
end if
Set Hc∗,v ← 1
break
Move to the next tree level

end while
end if

end for
end for

return H

LDPC codes begins by generating an initial expo-
nent matrix. This is done by assigning suboptimal
random shift values to the nonempty CPMs, as out-
lined in [20]. Since no optimization is applied at this
stage, the resulting matrix often exhibits undesirable
structural properties, such as low girth, the presence
of short cycles in the code’s Tanner graph, and a
low EMD value. These suboptimal characteristics
adversely affect the capacity of the resulting QC-
LDPC graphs. To mitigate these issues, a two-stage
approach is employed:

First stage: Improve of initial exponent matrix.
The process starts with the reconstruction of an ex-
ponent matrix using Eq. (3) and a greedy algorithm
designed to minimize (or eliminate) the number of

Algorithm 2. Simulated annealing method for con-
struction of QC and MET LDPC (multi)graphs

Input: M(H)—protograph matrix, L—circulant size,
g—girth of constructed matrix, EMD—minimal EMD
value, Iter—maximal number of iterations, seed—a
seed to be used in a pseudo-random number genera-
tor, Temp—initial value of temperature.
Output: Quasi-cyclic parity-check matrix E(H).
Nstep = 0
i, j = rnd(seed)
for it = 0; it <= Iter; it = it+ 1do

while Mij(H) = 0 do
i, j = rnd(seed)

end while
for k = 0; k <= L− 1; k = k + 1 do

Θk = enumcirccycles(i, j, k, g, EMD),

w (k) = e
−Θk
Temp ,

P (k) = w(k)/
L−1∑
m=0

w(m),

where Θk is the number of cycles through Eij(H)-
CPM with shift value k, P (k) is the probability of
k-shift CPM value choice, w(k) is the probability
weight function.

end for
Φ = enumcycles(E(H), g, EMD),

where Φ is the total number of cycles in E(H).

Eij(H) = rndshift(P, T emp).

Nstep = Nstep+ 1.

Temp = η
Φ

Nstep2
,

where η is some constant value.
end for

return E(H)

short cycles by carefully selecting CPM shift values.
However, due to the limitations of the greedy method
and the suboptimal initial matrix, the resulting matri-
ces often still have low girth and low EMD value.

Second stage: Simulated annealing optimiza-
tion. To further refine the exponent matrix obtained
in the first stage, a simulated annealing optimization
technique is applied. This metaheuristic algorithm
begins with a relatively high “temperature” param-
eter, allowing for exploration of a wide range of so-
lutions, including those that may temporarily worsen
matrix properties (such as increasing short cycles).
As the temperature gradually decreases, the focus
shifts to refining the solution by reducing short cycles
and optimizing the overall cycle structure.

The primary objective of this process is to generate
an exponent matrix with improved girth and EMD,
leading to a QC-LDPC graph with enhanced DNN
capacity capabilities. Finally, a method for estimating
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0

dmin(�) ~ O(N)

��s

Fig. 4. Schematic representation of the weight space.
Points denote equilibrium solutions for weights. α ≈
0.833 represents the storage capacity for binary synapses
(after which, the solution space becomes empty), dmin

denotes the actual Hamming distance without normal-
ization, [27].

and increasing the Hamming distance is applied to
further optimize the QC and MET QC-LDPC, [33].

The proposed PEG algorithm with ACE maxi-
mization and the simulated annealing (SA) method
with EMD maximization have already been applied
to factorization problems under Ising spin glass
energy-based models (EBM) on dense graphs, net-
work issues, surface meshes, and covariance ma-
trices. These approaches demonstrate significant
improvements in reconstruction accuracy using the
Frobenius norm—up to 8 orders of magnitude in
individual cases—as shown in [33]. The source code
for the proposed algorithms and their application
for clustering, along with publicly available data, is
published on GitHub [34].

4. CLUSTERING USING RBIM

To evaluate the efficiency of our clustering method,
we examine two distinct graph problems: classify-
ing graph vertices in the Edwards–Anderson model
and image clustering. We compare the clustering
outcomes for three graph types: Erdös–Rényi ran-
dom graphs, PEG graphs, and quasi-cyclic graphs,
keeping all other parameters constant. Specifically,
for both problems, the average vertex degree and the
number of vertices are held the same. Figure 5 shows
the trace of the adjacency matrices for ER, PEG,
QC graphs. These graphs are constructed with an
average degree of (c = 15) and include (n = 6000)
vertices, reflecting a typical setup for an image clus-
tering problem

We benchmark the proposed clustering method
against methods utilizing spin glass temperature,
mean field, and Laplacian matrix clustering. Below is
a formal description of these methods, which rely on
assigning each data element to an eigenvector com-
ponent corresponding to the minimum eigenvalue:

1. Bethe–Hessian matrices at Nishimori temper-
ature (Bethe–Hessian Nishimori clustering):

(HβN ,J) = δij

(
1 +

∑

k∈∂i

tanh2(βNJik)

1− tanh2(βNJik)

)

− tanh(βNJij)

1− tanh2(βNJij)
. (4)

2. Bethe–Hessian matrices at spin glass temper-
ature (Bethe–Hessian spin clustering):

(HβSG,J) = δij

(
1 +

∑

k∈∂i

tanh2(βSGJik)

1− tanh2(βSGJik)

)

− tanh(βSGJij)

1− tanh2(βSGJij)
.

3. Laplacian matrices:

(LJ) = δij

(
∑

k∈∂i
|Jik|

)
− Jij .

4. Weighted matrix of the graph J .
Eigenvectors derived from the adjacency matrix

analysis are clustered using the k-nearest neighbors
(KNN) method [35, 36]. This yields two distinct
clusters. Subsequently, KNN is employed to classify
novel data points based on their proximity to these
established clusters. Figure 6 illustrates the distribu-
tion of eigenvalues for ER graphs, PEG graphs, and
QC (multi)graphs. These eigenvalues correspond to
the spectrum of matrix B in the complex plane. Be-
cause the weighted adjacency matrix is asymmetric,
its eigenvalues are complex numbers.

In comparison to Erdös-Rényi random graphs,
both PEG and QC graphs exhibit more concentrated
eigenvalue distributions with pronounced ground
state structures. This characteristic suggests supe-
rior clustering performance for these graph types.

Definition 4. Weighted nonbacktracking matrix.
Given a graph ζ(ν, ε) and a function f : ε → R as-
signing weights ωe to edges e, the weighted non-
backtracking matrix B ∈ R

2|ε|×2|ε| is defined on the
set of directed edges of G as:

B(ij),(k�) = δjk(1− δi�)ωk�. (5)

Definition 5. Bethe–Hessian matrix given a
graph ζ(ν, ε), a function f : ε → R with f(e) = ωe

for all e ∈ ε, and a parameter x ∈ C \ {±ωij}(ij)∈ε,
the Bethe–Hessian matrix H(x) ∈ C

n×n is defined
as:

Hij(x) =

(
1 +

∑

k∈∂i

ω2
ik

x2 − ω2
ik

)
δij −

xωij

x2 − ω2
ij

.
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Fig. 5. Trace of graph adjacency matrices from left to right: Erdös–Rényi, PEG, QC.
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Fig. 6. Spectrum of the matrix B in the complex plane. The entries Jij are generated independently according to N (J0, ν
2).

The weights appearing in Eq. (5) are defined as ωij = tanh(βJij). Sparse regime: n = 500, c = 5, J0 = 1, ν = 1, β = 10. For
all plots, the dashed blue line corresponds to cE[tanh(βJ)], the dash-dotted green line to E[tanh2(βJ)]/E[tanh(βJ)], while
the solid black line represents the circle in the complex plane centered at the origin with radius

√
cE[tanh2(βJ)]. From left to

right: Erdös–Rényi, PEG, QC. The abscissa x-axis represents the real part, and the ordinate y-axis represents the imaginary
part.

Since ζ(ν, ε) is undirected, H(x) is symmetric but not
Hermitian unless x ∈ R.

Watanabe–Fukumizu equation, [37–39]. Let
H(x) and B be matrices on the same graph ζ(ν, ε)
with the same weighting function f . For x ∈ C \
{±ωij}(ij)∈ε:

det[xI2|ε| −B] = det[H(x)]
∏

(ij)∈ε
(x2 − ω2

ij).

If x is in the spectrum of B, det[H(x)] = 0.
To achieve accurate node clustering within our

RBIM framework on sparse graphs, we leverage
the Nishimori temperature estimation algorithm
proposed in [7], Alg. 3. Precise knowledge of the
Nishimori temperature, denoted as βN, is crucial for
obtaining a reliable estimate of the true node classes,
represented by σ. A robust estimator for σ can be
derived from the signs of the entries within the eigen-
vector x corresponding to the smallest eigenvalue
(close to zero) of the Bethe–Hessian matrix H

βN,˜J
.

To perform accurate node clustering, knowledge
of the Nishimori temperature βN is essential for ob-
taining a precise estimate of the true node classes σ̂,
Alg. 4. A powerful estimator of σ̂ is derived from the
signs of the entries of the eigenvector x of the Bethe–
Hessian matrix HβN, ˜J

, associated with its smallest
amplitude eigenvalue, which is close to zero. This
estimator is particularly effective in sparse graphs,
where traditional clustering methods may fail to ac-
curately capture the underlying community structure.

In the following, we use the overlap as a measure
to compare the inference performance of various node
classification algorithms based on spectral clustering.
The overlap is defined as:

Overlap =

∣∣∣∣∣2
(
1

n

n∑

i=1

δσi,σ̂i
− 1

2

)∣∣∣∣∣ , (6)

where σ̂i represents the estimated label of node i.
The overlap value ranges from 0 (indicating a random
assignment) to 1 (indicating a perfect assignment).
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Algorithm 3. Nishimori temperature estimation

Input: Weighted adjacency matrix of a graph J ∈ R
n×n,

precision error ε ∈ R.

Output: Estimated Nishimori temperature β̂N ∈ R
+.

1. Compute c, the average degree of the underlying

unweighted graph: c = 1
n

∑
i

∑
j I(Jij �= 0).

2. Compute β̂SG by solving cE[tanh2(β̂SGJij)] = 1.

3. Set t = 1 and βt ← β̂SG.

4. Initialize δ ← +∞.

while δ > ε :

(a) Compute Hβt,J, Eq. (4).

(b) Compute γmin,t, the smallest eigenvalue of

Hβt,J, and its associated eigenvector xt.

(c) Define the function ft(β
′) = xT

t Hβ′,Jxt,

for β′ ∈ R
+.

(d) Compute βt+1 by solving ft(βt+1) = 0.

(e) Update δ ← |γmin,t|.
(f) Increment t ← t+ 1.

return: βt−1.

Algorithm 4. Nishimori–Bethe relation for node
classification

Input: Weighted adjacency matrix of a graph J̃ ∈ R
n×n,

precision error ε ∈ R.
Output: Estimated Nishimori temperature β̂N ∈ R

+,
estimated label vector σ̂ ∈ {−1, 1}n.

1. Shift the nonzero entries of J̃:

J̃ij ← J̃ij −
1

2|E|1
T
n J̃1n.

2. Compute β̂N using Alg. 3.
3. Compute Hβt,J, Eq. (4).
4. Compute x ← the eigenvector associated with

γmin(Hβ̂N,˜J
).

5. Estimate σ̂ as the output of 2-class k-means on the
entries of x.

return: β̂N, σ̂.

Consider the construction of an RBIM ζ(ν, ε)-
graph (MET QC-LDPC multigraph) with 6000
nodes and a column weight of 10 using simu-
lated annealing, where ζ(ν, ε) = {E(H)1, E(H)2},
Eqs. (A.1a), (A.1b). The RBIM based on E(H)1

shows a clustering accuracy (overlap) of 76.46%,
while the RBIM based on E(H)2 achieves a clus-
tering accuracy of 90.60%.

The constructed multigraph E(H)1, Eq. (A.1a),
has dimensions 4× 4 with a circulant permutation
matrix (CPM) of weight 5 and size 1500. It has a
girth of 6 with the following EMD (Extrinsic Message
Degree) values:

• Cycle 6: EMD = 6 with 120 000 cycles.

• Cycle 8: EMD = 0 with 3000 cycles, EMD = 2
with 28 500 cycles, EMD = 4 with 352 500
cycles, EMD = 6 with 1 716 000 cycles,
EMD = 8 with 3 978 000 cycles.

• Cycle 10: EMD = 2 with 264 000 cycles,
EMD = 4 with 4 462 500 cycles, EMD = 6
with 29 655 000 cycles, EMD = 8 with
116 850 000 cycles, EMD = 10 with
202 647 000 cycles.

• Cycles 12: EMD 0, 2 and from 4 to 12.

The upper bound on the Hamming distance from
the protograph for the first three QC rows, the last
three QC rows, and the first, second, and fourth QC
rows, for a graph of size 3× 1500 nodes, is equal to
500.

The best RBIM graph, E(H)2, Eq. (A.1b), has
dimensions 16× 16 with a CPM of weight 2 and size
375. It has a girth of 6 with the following EMD
spectrum structures:

• Cycle 6: EMD = 9 with 7875 cycles, EMD =
11 with 26 625 cycles, EMD = 13 with 18 375
cycles, EMD = 14 with 13 500 cycles, EMD =
16 with 36 375 cycles, EMD = 18 with 24 750
cycles.

• Cycle 8: EMD = 10 with 1125 cycles, EMD =
12 with 348 000 cycles, EMD = 14 with
1 282 500 cycles, EMD = 15 with 1875 cycles,
EMD = 16 with 1 675 500 cycles, EMD = 17
with 432 750 cycles, EMD = 18 with 708 000
cycles, EMD = 19 with 1 684 125 cycles,
EMD = 21 with 2 125 875 cycles, EMD = 23
with 972 375 cycles.

• Cycle 10: EMD = 12 with 375 cycles, EMD =
13 with 62 250 cycles, EMD = 14 with 10 875
cycles, EMD = 15 with 11 272 875 cycles,
EMD = 16 with 84 000 cycles, EMD = 17 with
56 359 875 cycles, EMD = 18 with 301 875
cycles, EMD = 19 with 107 866 500 cycles,
EMD = 20 with 14 818 125 cycles, EMD = 21
with 91 248 375 cycles, EMD = 22 with
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73 055 250 cycles, EMD = 23 with 29 644 500
cycles, EMD = 24 with 137 562 375 cycles,
EMD = 25 with 174 000 cycles, EMD = 26
with 117 641 625 cycles, EMD = 27 with
25 500 cycles, EMD = 28 with 37 609 875
cycles.

• Cycles 12: EMD from 9 to 33.

The upper bound on the Hamming distance for
the protograph, estimated using method proposed in
[40, 41], is 2 625 536 when excluding the first four
quasi-cyclic (QC) rows. This results in a graph of
similar size to the previous example (12× 375). When
omitting the last four QC rows instead, this up-
per bound reduces to 929 792.These findings clearly
demonstrate that the eliminate trapping set struc-
tures (by increase EMD values) and increased Ham-
ming distance of the multigraph RBIM E(H)2 sig-
nificantly enhance the capacity of the proposed graph
representation. This results in an improved accuracy
of 90.60% for a weight of 10, marking a significant
enhancement of 19.93% over the 70.67% accuracy
achieved with E(H)1 quasi-cyclic hardware-friendly
graphs, which can be implemented using a shift reg-
ister.

Furthermore, multigraph MET QC-LDPC RBIM
E(H)2 exhibits a 17.39% improvement in accuracy
(90.60%) compared to the Erdös–Rényi (ER) graph
(73.21%), which lacks a structural, hardware-friendly
QC-LDPC representation. The different column
omissions correspond to varying levels of contextual
sparsity in neural network weights under different
input conditions. This is because different image
classes exhibit distinct nonlinear temporal correla-
tions across the image data. Increasing the Hamming
distance effectively increases the capacity to represent
these diverse class characteristics, [27, 42, 43].

4.1. RBIM Clustering on Synthetic Data

For the synthetic data RBIM clustering, we will
use the following initial parameters: the number of
graph vertices n = 500 and the average vertex weight
c = 5. According to Eq. (2), when generating the
graph weights J , we will vary the standard deviation
ν to alter the separability of the vertex classes. The
expected weight value J0 is positive for edges con-
necting vertices within the same class and negative
for edges connecting vertices from different classes,
as defined by Eq. (1).

Figure 7 illustrates the clustering results on syn-
thetic data based on the ratio βN

βSG
, which is a function

of the standard deviation in the original data. The
overlap, or the proportion of correctly clustered nodes,

�N/�SG

ov
er

la
p

Fig. 7. Clustering accuracy (overlap, Eq. (6)) of the
RBIM model on ER, PEG, and QC graphs using Mean
Field and Laplacian methods. Synthetic data with n =
500 nodes, average column weight c = 5, and varying
Nishimori-to-spin glass temperature ratios (βN/βSG).

is plotted on the abscissa axis. It demonstrates that
the proposed modifications of the spectral clustering
method using PEG and QC graphs outperform the
ER graph in regions with high dispersion. It is note-
worthy that as the dispersion decreases (Nishimori
temperature increases), MF clustering also shows
high performance. To assess the robustness of the
methods against decreasing graph density, we will
conduct an experiment with image data.

4.2. RBIM Clustering on GAN Images

In the image clustering task, we considered
6000 images of dogs and cats. These images were
generated using a GAN model, and feature extraction
was performed using the VGG16 model, [10]. Each
image was represented as a vector zi ∈ R

1×l, where
l = 512 features. To introduce sparsity, each element
of zi was multiplied by a binomial random variable
y ∼ Bin(1, 1 − κ

l ), with κ = 20.
Utilizing sparse data offers several advantages,

including reduced memory requirements, decreased
computational complexity, and improved scalability.
Additionally, sparse computations can help reduce
energy consumption, which is crucial for develop-
ing energy-efficient computing systems. The weight
of an edge connecting nodes i and j in the graph
is determined using the scalar product, proposed in
paper [7]:

Jij =
|(zi, zj)|

l
. (7)

The results of image clustering for Erdös–Rényi,
PEG, and QC graphs, based on the average vertex
weight, are shown in Fig. 8.

The figure demonstrates that under high spar-
sity conditions, spectral clustering on PEG and QC
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Fig. 8. Clustering accuracy (overlap, Eq. (6)) for the RBIM graph on ER, PEG, and MET QC-LDPC graphs for two image
classes (cats and dogs) under varying column weights c.

graphs significantly outperforms clustering on the
Erdös–Rényi graph. Even with a vertex weight of
c = 15, an overlap of 93.4% is achieved, whereas the
Erdös-Rényi graph does not reach this value even
with a weight of c = 25.

Let’s examine the case of c = 15 in more detail.
Figures 9 present column charts for the elements
of the eigenvectors corresponding to the minimum
Bethe–Hessian eigenvalue for the Erdös–Rényi,
PEG, and QC graphs. These elements essentially
serve as labels for KNN clustering, with the propor-
tion of elements erroneously assigned to a particular
cluster shown in green.

From these figures, it is evident that with the
same average vertex weight, spectral clustering on
the Erdös–Rényi graph performs significantly worse
in separating objects. Additionally, the clustering re-
sults for the QC graph exhibit a much smaller spread
along the abscissa axis.

Next, we examine clustering across various con-
figurations of the QC graph. The value before the
comma in Table 1 shows the clustering results ob-
tained using Eq. (7). This includes results for the
spectral method at the Nishimori temperature, the
spectral method at the spin glass temperature, the
mean field approximation, and the Laplacian method
across different scenarios.

From the data presented in the table, it is evident
that the spectral method at the Nishimori temper-
ature generally performs best for most graph con-
figurations, achieving high percentages of correctly
assigned elements. However, in cases where the
calculation of the Nishimori temperature is unsta-
ble, the method’s performance declines significantly.
For these configurations, the Laplace method con-
sistently shows good results, providing a reliable al-
ternative. Specifically, the Laplace method demon-
strates stability and effectiveness, particularly when
the Nishimori temperature method’s results are sub-
optimal.

We proposed more efficient cosine similarity ap-
proach compare to proposed equation (7) in paper
[7]. This approach is consistent with the cosine simi-
larity measure, which ensures faster convergence of
results. On very dense graphs, convergence might
be hindered due to an overly heterogeneous adjacency
matrix:

Jij =
|(zi, zj)|
|zi||zj |

. (8)

The value following the comma in Table 1 presents
the clustering results obtained using Eq. (8). This in-
cludes results for the spectral method at the Nishimori
temperature, the spectral method at the spin glass
temperature, the mean field approximation, and the
Laplacian method across various cases.

Comparing the results in Table 1, several key dif-
ferences between the original metric (Eq. (7)) and the
proposed cosine similarity metric (Eq. (8)) are evi-
dent. In general, the proposed cosine similarity metric
leads to improved clustering performance in many
cases. This improvement is reflected in higher accu-
racy percentages achieved across various algorithms,
including Nishimori temperature RBIM, spin glass
RBIM, mean field approximation, and the Laplace
method, as well as across different datasets. The co-
sine similarity approach ensures faster convergence of
clustering results due to its alignment with the cosine
similarity measure, which is particularly beneficial for
large-scale graphs where computational efficiency is
crucial. Additionally, this metric enhances the stabil-
ity of the clustering results by reducing the sensitivity
to noise and variations in the data. However, on
dense graphs, the cosine similarity metric may expe-
rience reduced accuracy due to its sensitivity to the
magnitude of vector components. In such cases, the
large magnitudes of vectors in highly interconnected
graphs can lead to smaller cosine similarities even
between closely related nodes, which can decrease
clustering accuracy for some graphs.
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Fig. 9. Histogram of the entries of the eigenvector for spectral clustering on the graphs from left to right: Erdös–Rényi,
PEG, QC.

5. CONCLUSIONS

This paper demonstrates the effectiveness of us-
ing QC and MET QC LDPC codes to construct
sparse graphs, which define the bonds (graph edges,
spin interactions) in RBIMs. We introduced a novel
approach that leverages Nishimori temperature es-
timation within the QC structural RBIMs to opti-
mize spectral clustering. Our results show that this
method significantly improves clustering accuracy by
exploiting the structured sparsity inherent in LDPC
codes. By constructing graphs based on image fea-
tures extracted from pretrained models like VGG, we
were able to reduce the feature space from 512 dimen-
sions to a sparse subset (approximately 2%) without
significant loss of information. This demonstrates the
ability of our approach to efficiently capture the most
relevant features for distinguishing between image
classes, such as binary classification of dogs and cats.
The integration of Nishimori temperature estimation
was crucial in optimizing the RBIM on these sparse
graph representations. This technique allowed us to
precisely tune the RBIM at the phase transition point,
leading to more robust and accurate clustering results
compared to traditional methods. Additionally, the
structured sparsity offered by LDPC graphs aligns
with the tendency of deep neural networks to develop
sparse activations, where only a subset of neurons is
engaged for a given input. This finding paves the way
for more computationally efficient and interpretable
models, focusing on the most informative features.

Our work also suggests that dimensionality re-
duction can be achieved without significant loss of
information, offering a pathway to more efficient neu-
ral network architectures. The use of LDPC codes
on the graph not only refines feature selection pro-
cesses but also opens avenues for developing hybrid
models that combine the strengths of graph-based
techniques with neural network architectures. This
could potentially lead to advancements in both graph
theory and deep learning, particularly in the context of
large-scale image classification tasks. For hardware
implementations, LDPC (multi)graphs benefit from
the quasi-cyclic matrix structure, which is based on

shift registers, optimizing memory access and en-
abling parallel processing. This makes our approach
not only theoretically appealing but also highly prac-
tical for real-world applications where computational
efficiency is crucial.

Looking ahead, we aim to extend this research
by exploring the behavior of multiclass activations
in neural networks, utilizing LDPC codes to gain
deeper insights into the representation of complex
categorical information. By studying the relation-
ships between nonbinary features, we hope to develop
novel training strategies and further optimize feature
selection. This interdisciplinary approach, combin-
ing concepts from statistical physics, graph theory,
and deep learning, holds great promise for advancing
our understanding of neural networks and expanding
their potential across a broader range of applications.

APPENDIX

MET QC-LDPC RBIM

The following appendix includes two examples of
multigraphs (MET) QC-LDPC parity-check matri-
ces, E(H)1 and E(H)2 (Table 1), each consisting
of 6000 nodes and a column weight of 10. The
multigraph E(H)1 has dimensions of 4 by 4, with a
circulant permutation matrix (CPM) of size 1500 and
a weight of 5. In contrast, E(H)2 has dimensions
of 16 by 16, with a CPM of size 375 and a weight
of 2. For brevity and due to space constraints, the
remaining multigraphs (E(H)3 through E(H)42 and
other graphs) are not included here but can be found
in the supplementary materials available at [34].

E(H)1 = [E1|E2|E3|E4], (A.1a)

E(H)2 = [E5|E6|E7|E8], (A.1b)

where E1, E2, E3, E4, E5, E6, E7, E8:
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Table 1. Comparison of clustering accuracy (overlap, Eq. (6)) using different methods (Nishimori temperature RBIM,
spin glass RBIM, mean-field approximation, Laplacian spectral clustering) on various QC LDPC graphs and MET QC-
LDPC multigraphs. Accuracy is evaluated using both the original edge weight metric ((7), [7]) and a proposed cosine
similarity metric (8)

Parity-check matrix of RBIM graphs Nishimori Spin glass Mean-field Laplacian

E(H)3, size of 2×2, L = 3000 23.67%, 31.40% 26.63%, 30.30% 0.03%, 20.70% 32.73%, 0.03%
E(H)4, size of 2×2, L = 3000 54.43%, 37.93% 47.00%, 32.80% 1.20%, 3.16% 0.03%, 0.10%
E(H)5, size of 2×2, L = 3000 53.40%, 33.10% 46.57%, 33.50% 1.10%, 4.56% 0.10%, 0.03%
E(H)6, size of 2×2, L = 3000 26.20%, 31.73% 29.10%, 26.56% 0.03%, 22.46% 31.97%, 0.03%
E(H)7, size of 2×2, L = 3000 23.67%, 31.40% 26.63%, 30.33% 0.03%, 20.70% 32.73%, 0.03%
E(H)8, size of 2×2, L = 3000 54.43%, 37.93% 47.00%, 32.80% 1.27%, 3.16% 0.03%, 0.10%
E(H)9, size of 2×2, L = 3000 53.40%, 33.10% 46.57%, 33.43% 1.10%, 4.56% 0.10%, 0.03%
E(H)10, size of 2×2, L = 3000 26.17%, 31.73% 29.10%, 26.56% 0.03%, 22.46% 31.97%, 0.03%
E(H)11, size of 2×2, L = 3000 23.67%, 31.40% 26.63%, 30.33% 0.03%, 20.60% 32.77%, 0.03%
E(H)12, size of 2×2, L = 3000 54.43%, 37.93% 47.00%, 32.80% 1.27%, 3.16% 0.03%, 0.10%
E(H)13, size of 2×2, L = 3000 26.17%, 31.70% 29.10%, 26.56% 0.03%, 22.46% 31.97%, 0.03%
E(H)14, size of 4×4, L = 1500 68.37%, 75.63% 67.70%, 73.53% 0.07%, 21.43% 0.03%, 0.03%
E(H)15, size of 4×4, L = 1500 69.70%, 74.70% 66.43%, 71.83% 0.30%, 0.13% 0.03%, 0.03%
E(H)1, size of 4×4, L = 1500 70.67%, 76.46% 67.83%, 73.96% 0.17%, 0.30% 67.63%, 0.03%
E(H)16, size of 4×4, L = 1500 68.60%, 75.76% 65.17%, 71.73% 0.17%, 0.20% 66.10%, 0.03%
E(H)17, size of 4×4, L = 1500 68.37%, 75.63% 67.70%, 73.53% 0.07%, 21.43% 0.03%, 0.03%
E(H)18, size of 4×4, L = 1500 69.70%, 74.70% 66.53%, 71.83% 0.30%, 0.13% 0.03%, 0.03%
E(H)19, size of 4×4, L = 1500 70.63%, 76.46% 67.77%, 74.13% 0.17%, 0.30% 67.63%, 0.03%
E(H)20, size of 4×4, L = 1500 68.60%, 75.70% 65.17%, 71.73% 0.17%, 0.20% 66.07%, 0.03%
E(H)21, size of 4×4, L = 1500 69.70%, 74.70% 66.20%, 71.83% 0.30%, 0.13% 0.03%, 0.03%
E(H)22, size of 4×4, L = 1500 70.67%, 76.46% 67.77%, 74.13% 0.17%, 0.30% 67.63%, 0.03%
E(H)23, size of 4×4, L = 1500 68.60%, 75.73% 65.17%, 71.73% 0.17%, 0.20% 66.07%, 0.03%
E(H)24, size of 4×4, L = 1500 64.57%, 72.53% 63.57%, 71.33% 0.17%, 0.26% 0.03%, 0.03%
E(H)25, size of 4×4, L = 1500 67.73%, 74.26% 66.40%, 73.50% 0.13%, 0.26% 0.03%, 0.03%
E(H)2, size of 16×16, L = 375 90.60%, 93.23% 90.00%, 92.46% 0.20%, 0.30% 0.00%, 0.03%
E(H)26, size of 16×16, L = 375 90.57%, 92.30% 89.47%, 92.16% 0.23%, 78.53% 0.03%, 0.03%
E(H)27, size of 16×16, L = 375 89.43%, 92.56% 89.03%, 92.20% 0.13%, 72.03% 0.03%, 0.03%
E(H)28, size of 16×16, L = 375 74.27%, 82.63% 62.33%, 75.60% 0.87%, 17.50% 0.03%, 0.03%
E(H)29, size of 16×16, L = 375 74.40%, 82.16% 62.90%, 76.20% 0.17%, 24.76% 0.03%, 0.03%
E(H)30, size of 16×16, L = 375 77.83%, 84.83% 65.80%, 80.26% 0.20%, 24.20% 0.03%, 0.03%
E(H)31, size of 16×16, L = 375 77.57%, 83.80% 65.57%, 78.20% 0.23%, 19.30% 0.03%, 0.03%
E(H)32, size of 25×25, L = 240 87.77%, 91.00% 85.80%, 90.43% 0.37%, 68.46% 87.03%, 90.40%
E(H)33, size of 25×25, L = 240 87.73%, 91.76% 86.67%, 91.00% 0.40%, 0.86% 0.03%, 90.96%
E(H)34, size of 25×25, L = 240 88.30%, 91.26% 86.23%, 90.50% 0.33%, 68.63% 87.20%, 91.16%
E(H)35, size of 25×25, L = 240 87.50%, 91.56% 85.73%, 91.26% 0.07%, 75.16% 0.03%, 91.40%
E(H)36, size of 25×25, L = 240 87.20%, 91.00% 85.70%, 90.43% 0.27%, 69.50% 85.87%, 90.7%
E(H)37, size of 25×25, L = 240 86.67%, 90.80% 86.43%, 90.86% 0.03%, 0.03% 0.03%, 91.03%
E(H)38, size of 25×25, L = 240 86.50%, 90.60% 85.20%, 89.83% 0.27%, 68.76% 85.00%, 90.33%
E(H)39, size of 25×25, L = 240 86.83%, 90.73% 86.07%, 89.83% 0.03%, 0.06% 0.03%, 89.86%
E(H)40, size of 25×25, L = 240 87.37%, 91.56% 85.97%, 90.56% 0.53%, 0.56% 86.63%, 91.00%
E(H)41, size of 25×25, L = 240 86.93%, 91.03% 85.57%, 89.66% 0.30%, 79.16% 86.13%, 90.00%
E(H)42, size of 48×48, L = 125 88.60%, 91.86% 87.73%, 90.46% 0.20%, 78.73% 87.23%, 0.03%
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E1 =

⎛

⎜⎜⎜⎜⎜⎜⎝

I77 + I204 + I487 + I570 + I819

I284 + I349 + I1119 + I1149 + I1323

0

0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

E2 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0

I26 + I255 + I381 + I676 + I1049

I63 + I89 + I282 + I329 + I840

0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

E3 =

⎛

⎜⎜⎜⎜⎜⎜⎝

0

0

I188 + I301 + I797 + I1056 + I1138

I229 + I685 + I694 + I990 + I1260

⎞

⎟⎟⎟⎟⎟⎟⎠
,

E4 =

⎛

⎜⎜⎜⎜⎜⎜⎝

I41 + I108 + I111 + I940 + I945

0

0

I259 + I444 + I963 + I691 + I1002

⎞

⎟⎟⎟⎟⎟⎟⎠
,

E5 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 I109 + I328 0

0 0 0 0

0 I1 + I355 0 0

I65 + I303 0 0 0

0 0 0 I112 + I296

0 0 0 0

0 0 0 0

0 0 0 I1 + I166

0 0 0 0

0 0 I8 + I216 0

I200 + I354 0 I65 + I267 0

0 0 0 I49 + I74

I113 + I265 I54 + I113 0 0

I10 + I374 I8 + I211 0 I238 + I244

I179 + I314 I67 + I95 I193 + I277 I223 + I329

0 I255 + I309 I5 + I239 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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E6 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I90 + I159 I0 + I182 0 0

I50 + I132 0 I78 + I186 I9 + I138

0 0 0 0

0 0 0 I24 + I31

0 I5 + I24 0 0

I97 + I363 I161 + I251 I304 + I326 I33 + I288

I17 + I347 0 0 0

0 0 I111 + I298 0

0 0 I0 + I369 0

0 I90 + I105 0 0

I27 + I368 0 0 0

0 0 0 0

0 0 0 0

0 0 0 I136 + I254

0 I13 + I60 0 0

0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

E7 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0

0 I315 + I363 I21 + I138 I6 + I153

I220 + I341 I28 + I161 0 0

0 I17 + I301 0 I37 + I274

I54 + I259 I256 + I301 I37 + I227 0

0 0 I254 + I307 0

0 0 I46 + I246 0

I47 + I267 0 0 0

0 0 0 0

0 0 0 0

0 0 I272 + I281 0

I49 + I104 0 0 I26 + I249

0 0 0 0

0 0 0 I295 + I332

I132 + I285 I279 + I362 0 0

0 I18 + I112 0 I24 + I134

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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E8 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 I114 + I136 I68 + I298

0 0 0 I149 + I173

I81 + I129 0 0 I281 + I317

0 0 I283 + I338 0

0 0 0 I156 + I218

0 0 0 0

0 I72 + I185 0 0

0 I33 + I186 0 0

I296 + I315 I97 + I238 0 0

0 0 0 0

0 0 I97 + I208 0

0 0 0 0

0 I253 + I348 I198 + I316 I95 + I126

0 0 0 0

I87 + I303 0 I59 + I71 0

0 I22 + I317 0 I18 + I112

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

FUNDING

This work was supported by ongoing institutional
funding. No additional grants to carry out or direct
this particular research were obtained.

CONFLICT OF INTEREST

The authors of this work declare that they have no
conflicts of interest.

REFERENCES
1. L. Dall’Amico, R. Couillet, and N. Tremblay,

J. Mach. Learn. Res. 22 (217), 1 (2021).
https://www.jmlr.org/papers/v22/20-261.html.

2. J. Lang, S. Sachdev, and S. Diehl, arXiv Preprint
(2024).
https://doi.org/10.48550/arXiv.2406.05842

3. M. Talagrand, Mean Field Models for Spin Glasses,
Vol. II: Advanced Replica-Symmetry and Low
Temperature, 2nd ed., Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge/A Series of Modern
Surveys in Mathematics, Vol. 55 (Springer, 2011).
https://doi.org/10.1007/978-3-642-22253-5

4. M. Fiedler, Czech. Math. J. 23, 298 (1973).
https://doi.org/10.21136/cmj.1973.101168

5. K. Hayashi, S. G. Aksoy, Ch. H. Park, and H. Park, in
Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management
(Association for Computing Machinery, New York,
2020), p. 495.
https://doi.org/10.1145/3340531.3412034

6. H. Nishimori, Prog. Theor. Phys. 66, 1169 (1981).
https://doi.org/10.1143/PTP.66.1169

7. L. Dall’Amico, R. Couillet, and N. Tremblay, J. Stat.
Mech.: Theory Exp. 2021, 093405 (2021).
https://doi.org/10.1088/1742-5468/ac21d3

8. H. Kwon, J. Jang, J. Kim, K. Kim, and K.
Sohn, in Proceedings of the IEEE/CVF
Conference on Computer Vision and
Pattern Recognition (CVPR) (2024),
p. 17364. https://openaccess.thecvf.com/content/
CVPR2024/html/Kwon_Improving_Visual_
Recognition_with_Hyperbolical_Visual_Hierarchy_
Mapping_CVPR_2024_paper.html.

9. S. Ramasinghe, V. Shevchenko, G. Avraham,
and A. Thalaiyasingam, in Proceedings of the
IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2024),
p. 27263. https://openaccess.thecvf.com/content/
CVPR2024/html/Ramasinghe_Accept_the_

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 79 Suppl. 2 2024



S664 USATYUK et al.

Modality_Gap_An_Exploration_in_the_Hyperbolic_
Space_CVPR_2024_paper.html.

10. K. Simonyan and A. Zisserman, in 3rd International
Conference on Learning Representations (ICLR
2015) (2015), p. 1.

11. K. He, X. Zhang, Sh. Ren, and J. Sun, in 2016
IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), Los Alamitos, CA, 2016
(IEEE, 2016), p. 770.
https://doi.org/10.1109/CVPR.2016.90

12. M. Tan and Q. Le, Proc. Mach. Learn. Res. 97, 6105
(2019).

13. Z. Liu, Yu. Lin, Yu. Cao, H. Hu, Yi. Wei, Zh. Zhang,
S. Lin, and B. Guo, in 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV),
Montreal, 2021 (IEEE, 2021), p. 10012.
https://doi.org/10.1109/iccv48922.2021.00986

14. W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang,
T. Lu, P. Luo, and L. Shao, Comput. Visual Media 8,
415 (2022).
https://doi.org/10.1007/s41095-022-0274-8

15. J. S. Wang, W. Selke, V. S. Dotsenko, and V. B. An-
dreichenko, Europhys. Lett. 11, 301 (1990).
https://doi.org/10.1209/0295-5075/11/4/002

16. I. A. Gruzberg, N. Read, and A. W. W. Ludwig, Phys.
Rev. B 63, 104422 (2001).
https://doi.org/10.1103/physrevb.63.104422

17. J. Xie, Y. Lu, S.-C. Zhu, and Y. Wu,
Proc. Mach. Learn. Res. 48, 2635 (2016).
https://proceedings.mlr.press/v48/xiec16.html.

18. M. Hill, J. C. Mitchell, and S.-C. Zhu,
in International Conference on Learning
Representations (2021). https://openreview.net/
forum?id=gwFTuzxJW0.
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