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Abstract—Machine learning (ML) and deep learning (DL) methods are extensively applied in various
fields of Earth sciences, such as oceanography, meteorology, and climatology. These statistical approaches
enable efficient processing of large volumes of data, uncovering hidden patterns, reducing or assessing
uncertainty in climate and weather forecasts, automating monitoring, and accelerating analytical research.
Among most successful examples, one may mention remote sensing data analysis, geophysical processes
modeling, approximating unknown physical parameters, and solving statistical weather and climate
forecasting problems. However, there are certain challenges, such as the need for large data volumes,
computational demands and technical issues of the data science approach, and ensuring the physical
plausibility of results. In the future, the development of hybrid models that combine physical and statistical
methods is anticipated, as well as improvements in the interpretability of ML and DL models. In this
overview, we will examine current achievements in the application of ML and DL in the study of the ocean,
atmosphere, and climate, and we will discuss the challenges and prospects for their further development.
This overview places particular emphasis on the progress made in the Russian Federation scientific
community regarding the application of ML, DL, and AI within Earth sciences, highlighting both its
accomplishments and the challenges it faces in the global research landscape.
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1. INTRODUCTION

In recent years, the domains of machine learning
(ML), deep learning (DL), and artificial intelligence
(AI) have experienced unprecedented growth and de-
velopment, particularly within the fields of Earth sci-
ences, climate research, atmospheric sciences, and
oceanography. Historically, these technologies were
viewed as nascent tools in Earth sciences, primarily
confined to computational or theoretical frameworks.
However, by 2024, they have evolved into indispens-
able components of contemporary scientific research
methodologies, significantly enhancing the analytical
capabilities of researchers across a variety of environ-
mental disciplines.

The integration of ML and DL techniques into
Earth sciences enables researchers to analyze com-
plex datasets characterized by high dimensionality,
nonlinear relationships, and inherent uncertainties.

*E-mail: krinitsky@sail.msk.ru

This has proven particularly valuable in addressing
the multifaceted nature of climate systems, where tra-
ditional (e.g., linear) methods often fall short. For in-
stance, advanced algorithms allow for the modeling of
intricate interactions between atmospheric, oceanic,
and terrestrial processes, facilitating a more nuanced
understanding of climate dynamics. Furthermore,
these technologies have been instrumental in im-
proving predictive accuracy for climate models and
weather forecasts, as evidenced by numerous studies
highlighting their efficacy in capturing the intricate
patterns and trends of environmental phenomena.

The automation of data processing tasks through
data-driven algorithms has further transformed the
research landscape. By minimizing the reliance on
manual analysis, researchers can now focus on inter-
preting results and deriving insights from their find-
ings. This shift not only enhances the efficiency of
research workflows but also accelerates the pace of
scientific discovery, particularly in fields where timely
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decision-making is essential, such as disaster re-
sponse and resource management.

Moreover, the application of ML, DL, and AI has
facilitated advancements in remote sensing technolo-
gies, enabling the extraction of meaningful informa-
tion from satellite and aerial imagery. This capabil-
ity is crucial for monitoring environmental changes,
assessing natural resource availability, and under-
standing the impacts of anthropogenic activities on
ecosystems. As highlighted in our previous stud-
ies [6–8], the ability to analyze spatial and temporal
trends in data has opened new avenues for research
and application, bridging gaps between theoretical
understanding and practical solutions.

The academic community has responded to this
technological revolution with increased publication
activity, as seen in the significant rise in peer-
reviewed papers integrating ML, DL, and AI method-
ologies in Earth sciences over the past two decades.
This growth underscores a burgeoning recognition
of the transformative potential of these approaches in
tackling pressing environmental challenges.

An analysis of publication activity sourced from
the Scopus database reveals a significant upward
trend in the number of peer-reviewed articles that in-
corporate these advanced computational techniques.
This trend is illustrated in Fig. 1, which depicts the
annual growth of publications employing ML, DL,
and AI methodologies in Earth sciences alongside
the total number of published papers in the field. In
Figs. 1–4, we use the data collected in aggregated
form from Scopus database employing its query lan-
guage, where NAT_SCI literal refers to the class of
studies in Scopus query language, namely natural
sciences. The data in Fig. 1 indicates that from
2016 onward, there has been a marked acceleration in
the adoption of data-driven methodologies, reflecting
a growing recognition of their potential to enhance
scientific research.

Globally, the United States and China have
emerged as leading contributors to the body of work
in Earth sciences that utilize ML and AI, consistently
ranking at the top in publication volume. As shown
in Fig. 2b, the number of peer-reviewed articles
published in these countries substantially outpaces
that of other nations, highlighting their robust re-
search infrastructure and investment in advanced
computational methods and academic research. In
contrast, the Russian Federation has demonstrated
a more gradual engagement with these technologies.
Despite the country’s significant technical expertise
and academic resources, its ranking in the global
landscape remains relatively low. According to
the data presented in Fig. 2, Russia occupied the
19th position in terms of publication activity in Earth
sciences incorporating ML and AI from 2000 to 2023.

This ranking underscores a critical disparity between
Russia’s potential and its actual engagement with
these emerging methodologies.

Recent data from 2023 indicates a slight improve-
ment in Russia’s standing, moving from 19th to 18th
place, as depicted in Fig. 3b. This modest advance-
ment suggests a growing interest in machine learning
applications within the Russian academic commu-
nity, albeit at a pace that lags behind leading nations.
The progress made by Russia is contextualized in
Fig. 3a, which illustrates the rank changes of the top
four countries alongside Iran (as an dynamic outlier)
and Russia over the years. The data highlights the
competitive nature of research in this field at the
moment, and the need for enhanced collaboration and
investment in ML and AI technologies particularly in
Earth and Environmental sciences.

Thus, while the global academic community has
made significant strides in integrating ML, DL, and
AI within Earth sciences, the progress observed in
Russia indicates a path of improvement yet to reach
its full potential. The increasing fraction of publica-
tions (see Fig. 2a) signifies a burgeoning interest and
commitment to leveraging these advanced compu-
tational techniques to tackle pressing environmental
challenges. Continued efforts to enhance research
capabilities, foster collaboration, and support the de-
velopment of skilled professionals in this domain will
be essential for russian scientific community to con-
tribute effectively to the advancement of advanced
data-driven statistical approached in Earth and en-
vironmental sciences.

2. DATA-DRIVEN TASKS
IN EARTH SCIENCES

The integration of ML, DL, and AI into Earth
sciences has facilitated the exploration and resolution
of a diverse array of data-driven tasks. Commonly,
these tasks are systematically categorized based on
their mathematical nature and objectives, providing a
structured framework for understanding the potential
applications of these advanced computational tech-
niques. The classification scheme delineates three
primary types of tasks: supervised learning, unsu-
pervised learning, and other types (see Fig. 4), each
addressing distinct problem domains and method-
ological approaches. Further in this overview, we
cover the progress of ML, DL, and AI approaches
in Earth sciences and environmental sciences with
particular focus on the studies landscape of russian
scientific society. In Section 3, we overview stud-
ies employing supervised learning approach; in Sec-
tion 4, we overview studies employing Unsupervised
learning approach. There is also a distinct Section 5,
where we cover the promising topic of self-supervised
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Fig. 1. Annual number of publications employing ML, DL, and AI methodologies in natural sciences alongside the total
number of published papers in the field, according to Scopus database.

(b)(a)

Fig. 2. (a) Annual fractions of publications employing ML, DL, and AI methodologies in natural sciences alongside the fraction
of russian studies; (b) ranking of top-30 countries according to Scopus data aggregated from 2000 till 2023. The data is
collected in aggregated form from Scopus database using its query language.

generative pretraining which results in foundation
models, particularly for climate data. We summarize
the overview in conclusion Section 6.

3. SUPERVISED LEARNING

Supervised learning is a prominent category of
machine learning that involves training models on
labeled datasets, where the input features are paired
with corresponding output labels. This approach

is particularly valuable in Earth sciences, where re-
searchers seek to predict or classify specific environ-
mental phenomena based on historical data. Com-
mon tasks within supervised learning include regres-
sion, where the goal is to estimate continuous val-
ues [1–3, 5, 7, 8, 14, 15, 19, 22, 23], and classifi-
cation, which involves categorizing data points into
discrete classes [4, 6, 20, 21].

In Earth sciences, supervised learning has been
effectively applied to a variety of tasks. For instance,
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(b)(a)

Fig. 3. (a) Annual ranking of top-four nations in publication activity regarding employment of ML, DL, and AI methodologies
in natural sciences alongside the ranks of Iran (black line) and Russian Federation (yellow line); (b) ranking of top-30 countries
according to 2023 Scopus data. The data is collected in aggregated form from Scopus database using its query language.

Fig. 4. Classification of ML tasks as a framework of this overview.

models can predict meteorological parameters, such
as temperature or precipitation levels [3], based on a
range of input variables, including atmospheric pres-
sure, humidity, and wind speed. Another example is
the usage of supervised learning techniques in classi-
fication of cloud types using remote sensing data [21,
24–26].

One key advantage of supervised learning lies in
its ability to leverage vast amounts of historical data,
allowing for the development of predictive models that
can generalize well to new, unseen data. However,
the success of these models is contingent upon the

quality and quantity of labeled training data avail-

able, which is sometimes a limiting factor in Earth

sciences. As researchers continue to explore the

potential of supervised learning, the integration of

these methods will remain essential for enhancing

our understanding of complex environmental sys-

tems and improving decision-making processes in

climate-related applications.
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3.1. Examples of Supervised Learning Tasks

In this section, we present distinct examples of
recent studies in Earth Sciences employing ML, DL,
or AI methods of Supervised type.

3.1.1. Ocean waves characteristics acquisition
with artificial neural networks. The characteri-
zation of wind waves is a critical aspect of oceano-
graphic research, as these waves significantly influ-
ence the interaction between the ocean and the at-
mosphere. Accurate estimation of wave parameters,
such as significant wave height, wavelength, and
wave period, is essential for various applications, in-
cluding navigation, coastal management, and climate
modeling. Traditional methods of wave measurement
often rely on buoys or visual observations, which can
be limited by their spatial coverage and the expertise
of the observers.

In the series of studies presented since 2023 [5,
8], researchers employed artificial neural networks
to automate the acquisition of wind wave character-
istics from maritime radar data. The data utilized
included raw radar images captured by navigation X-
band radars aboard research vessels, which provide
intrinsic information about wave patterns and surface
conditions. The specific ANN architecture employed
was a convolutional neural network (CNN), which
is particularly well-suited for image processing tasks
due to its ability to learn spatial hierarchies of fea-
tures. The high-level scheme of the study is presented
in Fig. 5.

The results of this study demonstrated that the
ANN could effectively predict wave characteristics
with a high degree of accuracy. The model slightly
outperformed traditional statistical methods within
the range of its applicability limits, yielding a root
mean square error (RMSE) of approximately 0.2 m
for significant wave height estimations. This work not
only highlights the potential of ANNs in enhancing
wave measurement techniques but also underscores
the importance of integrating automated systems in
oceanographic research.

3.1.2. Detection of mesoscale convective sys-
tems from satellite imagery with convolutional
neural networks. Mesoscale convective systems
(MCSs) are significant weather phenomena that can
produce severe weather events, including heavy rain-
fall, thunderstorms, and tornadoes. Accurate detec-
tion and monitoring of MCSs are crucial for weather
forecasting and climate studies, as they can have
profound impacts on local and regional weather pat-
terns. Traditional methods for identifying MCSs rely
heavily on manual analysis of satellite imagery, which
can be time-consuming and subjective. Therefore,
leveraging machine learning techniques, particularly
convolutional neural networks (CNNs), presents an

innovative solution to automate and enhance the de-
tection process.

In the study presented in 2023 [6], researchers
aimed to develop a CNN-based model to detect
MCSs using high-resolution satellite imagery. The
dataset used for training the model, namely the
DaMesCoS [6] consisted of labeled satellite images,
which included various instances of MCSs identified
by meteorological experts. This labeled data was
complemented by additional meteorological param-
eters that provided contextual information about the
atmospheric state during MCS events.

The results demonstrated a high level of accuracy
in detecting MCSs. This performance significantly
outpaced traditional detection methods, providing a
more efficient means to monitor these weather sys-
tems. The study illustrates the power of Dl approach
in automating the detection of complex atmospheric
phenomena, thereby enhancing capabilities for clima-
tological studies. High-level scheme of the study is
presented in Fig. 6.

3.1.3. Statistical downscaling of surface winds
with artificial neural networks. Statistical down-
scaling is a critical technique used in climate sci-
ence to derive local-scale climate information from
coarse-scale global climate models (GCMs) [1]. This
approach is essential for capturing the finer details
of surface winds, precipitation, and temperature,
which are crucial for understanding regional climate
impacts and variability. Traditional downscaling
methods, often reliant on empirical relationships,
can struggle to accurately represent the complex
interactions present in localized weather phenomena.
Therefore, the application of various ML models [3],
DL models [1] and foundation models [49] offers a
promising alternative for enhancing the precision of
statistical downscaling.

In the series of studies presented since 2021 [1,
60], researchers focused on the statistical down-
scaling of surface winds using various types of
convolutional neural networks. The problem was
framed around the need to improve the accuracy of
wind forecasts derived from ERA-Interim reanalysis
outputs, which often lack the resolution necessary
for local applications. The data used for this study
included high-resolution dynamical downscaling
computed with Weather Research and Forecasting
model which provided high-resolution ground truth
data. This dataset was paired with larger-scale
atmospheric variables produced by ERA-Interim
reanalysis, such as pressure and temperature fields, to
facilitate the training of the ANN. The results of the
study indicated that the CNNs may perform the task
of statistical downscaling though the quality needs
to be improved. This series of studies demonstrates
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Fig. 5. Components of the task of wind waves characteristics acquisition: (a) a research vessel; (b) X-band maritime radar
(particularly, its antenna); (c) filtered radar image prepared for inspection by ship navigator and nonsuitable for acquiring wind
wave characteristics; (d) raw radar image without filtering; (e) symbolic annotation of the DL model, convolutional neural
network in particular; (f) resulting significant wave height (SWH).

Fig. 6. Components of the task of MCS detection from Meteosat remote sensing imagery: (a) source Meteosat data in three
channels colored according to the colormap described in the study [6]; (b) symbolic annotation of the DL model, convolutional
neural network in particular; (c) demonstration of one particular result of the network compaing the labels of the model (in
magenta) with expert labels (yellow); (d) resulting MCS events density as one of climatological outcomes of the study.

the potential of artificial neural networks in statistical
downscaling problem which is yet to be revealed.

4. UNSUPERVISED LEARNING
Unsupervised learning is a critical branch of ma-

chine learning that focuses on discovering patterns

and structures within unlabeled datasets. Unlike
supervised learning, where the model is trained on
input-output pairs, unsupervised learning algorithms
analyze data without predefined labels, allowing re-
searchers to explore the inherent relationships and
organization within the data. This approach is par-
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ticularly useful in Earth sciences, where datasets may
be vast and complex, often lacking explicit labeling.

In Earth sciences, unsupervised learning has been
extensively applied to tasks such as clustering [11, 16,
30, 40] and dimensionality reduction [27–29]. Clus-
tering techniques, for instance, can identify groups of
similar geographical features or atmospheric patterns
based on observed or modeled characteristics [30].
This capability allows researchers to detect emerging
phenomena, classify regions based on climate types,
or analyze ecological patterns without prior knowl-
edge of group definitions. For example, clustering
has been utilized to categorize different ecosystems
based on environmental variables, thereby enhancing
our understanding of biodiversity and habitat distri-
bution [31].

Dimensionality reduction techniques, such as
principal component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE) [32], or
uniform manifold approximation and projection tech-
nique (UMAP) [33], help visualize high-dimensional
data by compressing it into lower dimensions while
preserving essential relationships. This is particularly
valuable for exploratory data analysis, enabling re-
searchers to discern trends and anomalies in complex
datasets.

4.1. Unsupervised Learning: Anomaly Detection

Anomaly detection, also known as outlier detec-
tion, is a specialized task within the realm of unsuper-
vised learning that focuses on identifying data points
that deviate significantly from the expected pattern of
behavior within a dataset. In Earth sciences, anomaly
detection plays a crucial role in monitoring environ-
mental systems, identifying unusual climatic events,
detecting rare geological phenomena or identifying
unusual behaviour of monitoring equipment [10].

In some cases, the problems of supervised nature
may be reformulated as anomaly detection in order to
exploit the full potential of vast data amount in case of
lacking labeled data. For example, there are studies
demonstrating the approach of anomaly detection in
problems of marine mammals detection in remote
optical sensory data [9].

In the context of climate science, anomaly detec-
tion techniques can be employed to identify unusual
temperature fluctuations, precipitation extremes, or
shifts in atmospheric pressure patterns [34–36]. For
instance, researchers can utilize statistical methods
and machine learning algorithms to analyze histor-
ical climate data and establish baseline conditions.
By applying anomaly detection algorithms such as
isolation forests [37] or autoencoders [38, 39], scien-
tists can effectively flag instances of extreme weather
events, such as heatwaves or heavy rainfall.

Moreover, anomaly detection is instrumental in
the analysis of remote sensing data, where it aids
in identifying unusual land cover changes, such as
deforestation, urban expansion, or the effects of nat-
ural disasters. By rapidly detecting these changes,
researchers can assess the impact on ecosystems and
make informed decisions regarding conservation and
land management practices.

Anomaly detection serves as a powerful tool in
Earth sciences, enhancing our ability to monitor and
respond to environmental challenges by providing in-
sights into rare and significant events that may oth-
erwise be overlooked in large datasets.

4.2. Unsupervised Learning: Generative

Generative models represent a distinct class of
machine learning approaches that focus on learning
the underlying probability distribution of a dataset.
These models aim to approximate the probability den-
sity function (PDF) of observed data, mostly implic-
itly through enabling the generation of new samples
that align with the learned distribution. In Earth
sciences, generative models, including generative ad-
versarial networks (GANs) [41, 43] including GANs
designed for superresolution [42], variational autoen-
coders (VAEs) [44], and foundation models for cli-
mate data [45–54], have gained traction for their
ability to synthesize realistic data, enhance predictive
modeling, and facilitate uncertainty quantification.

One of the primary advantages of generative
models is their capability to capture complex, high-
dimensional data distributions without preconceived
notions about underlying relationships. This flexi-
bility allows researchers to model intricate environ-
mental phenomena, such as spatial distributions of
precipitation or temperature variability across re-
gions. Additionally, by modeling the joint distribution
of multiple climate variables, generative models can
facilitate the synthesis of synthetic datasets reflect-
ing possible future climate scenarios under varying
climatic conditions, which is particularly valuable for
climate impact assessments and resource manage-
ment.

Moreover, generative models address data scarcity
issues often faced in Earth sciences. Observational
data may be limited due to geographic, temporal,
or logistical constraints. By leveraging generative
modeling techniques, researchers can augment ex-
isting datasets with plausible synthetic data, thereby
enhancing the robustness of their analyses. This
approach not only improves model training but also
contributes to a more comprehensive understanding
of environmental processes by filling in gaps where
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empirical data may be lacking [55]. As the field con-
tinues to evolve, the integration of generative mod-
eling techniques, including foundation models, will
likely play an increasingly prominent role in tackling
the multifaceted challenges posed by climate change
and environmental degradation.

5. SELF-SUPERVISED GENERATIVE
PRETRAINING (FOUNDATION MODELING)

Foundation modeling in oceanography, atmo-
spheric sciences and climatology represents a trans-
formative approach that leverages self-supervised
learning techniques to enhance the prediction and
understanding of complex atmospheric, oceanic and
climatic phenomena. Recent advancements in deep
learning have led to the development of foundation
models [45–54], that are pretrained on vast, hetero-
geneous datasets and can be fine-tuned for various
downstream tasks such as weather forecasting, cli-
mate projections, and downscaling.

One of the key properties of some of these models,
such as ClimaX [51] and Prithvi WxC [54], is their
ability to handle diverse data inputs, including those
from different sources like CMIP6 and ERA5. By
utilizing architectures like vision transformers (ViT),
these models can efficiently capture the spatial and
temporal dependencies inherent in climate data.
They employ innovative tokenization and aggregation
methods that allow for effective processing of varying
numbers of input variables, thus potentially improv-
ing scalability and generalizability.

The training process of foundation models typi-
cally involves two phases: a self-supervised pretrain-
ing phase that learns representations from unlabeled
data, followed by a fine-tuning phase tailored to spe-
cific applications. This two-stage method enables
the models to capture fundamental atmospheric dy-
namics and to maintain robust performance across a
range of tasks, from short-term weather predictions
to long-term climate modeling, statistical downscal-
ing and statistical correction.

The training of foundation models for climate data
relies on several key datasets, each with its own
strengths and weaknesses. One of the most impor-
tant datasets is ERA5 [56], which provides a com-
prehensive reanalysis of atmospheric data at high
resolution. Its advantage lies in offering detailed
historical records and a wide range of variable cov-
erage. However, it is limited to past observations
and does not include future projections. Another
significant dataset is CMIP6 [57], which consists of
climate simulation data from various models. This
dataset allows models to learn from a diverse range
of potential future climate scenarios, enhancing their
predictive capabilities. However, the simulations can

be biased based on the models used, and not all vari-
ables may be equally represented. MERRA-2 [58],
developed by NASA, offers a long-term climate record
with a wide array of atmospheric variables at multiple
altitudes. While it enhances model training due to
its extensive coverage, the data can be coarser in
resolution compared to ERA5. Lastly, CORDEX [59]
focuses on regional climate projections and provides
high-resolution data useful for downscaling and local
climate studies. However, it may lack long-term his-
torical consistency as it emphasizes specific regions.
These datasets collectively enhance the robustness
of foundation models, but their inherent biases and
limitations require careful consideration during the
training and evaluation processes.

The incorporation of foundation modeling prin-
ciples into climate data applications has marked a
significant advancement in the field. By harnessing
self-supervised learning and adaptable architectures,
these models not only outperform traditional numer-
ical methods in some of benchmarks but also offer
greater efficiency in inference. The ongoing research
and development in this domain promise to further
enhance the accuracy and reliability of weather and
climate predictions, paving the way for more sophis-
ticated environmental science applications.

6. CONCLUSIONS
Machine learning, deep learning (DL), and artifi-

cial intelligence (AI) have emerged as powerful tools
for addressing a vast subset of tasks within the realm
of Earth sciences. Their application spans various
domains, including climate modeling, weather fore-
casting, and oceanography, where they enhance our
ability to analyze complex datasets, improve predic-
tive accuracy, and automate data processing tasks.
The studies discussed in this paper exemplify the
effectiveness or potential yet to be revealed of these
methodologies in acquiring valuable insights and ad-
vancing our understanding of intricate environmental
processes.

Despite the progress made, there remain signifi-
cant challenges and research areas within Earth sci-
ences that still lack effective solutions through ML,
DL, and AI. Issues such as data scarcity, the lack of
labeled datasets, the need for real-time analysis, and
the intricacies of modeling nonlinear relationships in
complex systems highlight the limitations of current
approaches. These gaps present opportunities for
further exploration, underscoring the necessity for
continued education, research and development in the
application of these technologies.

Moreover, the fundamental limitations inherent
in data-driven approaches necessitate the incorpo-
ration of physical principles into the modeling pro-
cess. Physics-informed models represent a promising
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direction for overcoming the shortcomings of tradi-
tional ML and DL methods, as they integrate domain
knowledge and physical constraints into the learning
framework. This synergy can lead to more accurate
and reliable predictions. As the field evolves, the in-
tegration of physics-informed models with advanced
computational techniques will be crucial in unlocking
the full potential of ML, DL, and AI in Earth sciences.

The progress in foundation modeling within cli-
mate and atmospheric sciences has witnessed explo-
sive development, driven by advancements in self-
supervised learning, particularly attention mecha-
nism in artificial neural networks, and the increasing
availability of vast and diverse datasets. These
foundation models exemplify the potential of lever-
aging self-supervised learning techniques to capture
complex atmospheric dynamics while maintaining
generalizability across various downstream tasks.
The advantages of foundation modeling include im-
proved accuracy in predictions, enhanced efficiency
in training, and the ability to integrate heterogeneous
data sources, which can significantly accelerate the
development of robust forecasting systems. How-
ever, challenges remain, such as potential biases in
model outputs due to the training data, and the need
for substantial computational resources. Despite
these issues, the integration of foundation models
into environmental sciences represents a promising
frontier. One of the conclusions drawn from the
studies presented is that there is currently no oceanic
foundation model, which poses a significant challenge
in pushing the limits of accurate initial-conditions
solutions for mid-term and even seasonal forecasting
due to the inherent inertia of ocean systems.

Another surprising conclusion from the examina-
tion of ML, DL, and AI applications in Earth Sciences
is that these advanced statistical methods have yet to
provide significant new insights into the underlying
physics of both the atmosphere and the ocean. Fur-
thermore, these approaches appear to struggle with
extrapolating beyond the data distribution encoun-
tered during training, limiting their capacity to predict
the characteristics of climate change or other regime-
shifting events and processes.
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