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Abstract—In this study, we propose several methods based on machine learning approaches for predicting
air pollution levels in cities located in mountain valleys, with Grenoble (France) as a case study. Pollution
forecasting is performed using both regression and classification of exceeding threshold levels. We employ
a data-driven approach, utilizing various machine-learning models. Based on historical data from 2012
to 2018, collected at several meteorological stations in the Grenoble Valley, multiple machine learning
models were trained to predict the daily average concentrations of fine particulate matter PM10 and PM2.5
three days ahead. Days with high PM concentrations exceeding the threshold values set by the World
Health Organization (WHO) are of particular interest in our study. It was found that the presence of
local meteorological conditions leads to the formation of temperature inversions, which are statistically
associated with air pollution levels in this region. Although local meteorological conditions primarily
determine the pollution level, the machine learning models considered in our study can be adapted for other
cities in valleys by training them on relevant data.

Keywords: machine learning, air pollution, PM2.5, PM10, temperature inversion, air quality

DOI: 10.3103/S0027134924702242

1. INTRODUCTION

Air pollution is a severe problem for most cities
in the world. Some of the most health-threatening
pollutants are particulate matter (PM) with a di-
ameter of less than 10 μm (PM10) and less than
2.5 μm (PM2.5) [1]. The primary sources of par-
ticulate matter are transportation, heating, industry,
and waste incineration [2]. Once in the atmosphere,
these particles directly affect the respiratory system
and provoke cardiovascular diseases [3].

Grenoble is among the most polluted cities in
France. It is located in a valley and surrounded by
three mountain ridges. Mountain ridges and narrow
valleys affect wind directions and form local meteo-
rological conditions. The orography contributes to
the distribution of anthropogenic emissions and their
following concentration in the valleys [4, 5]. The
location of Grenoble, local meteorological conditions,
industry, and heating impact air quality negatively.

*E-mail: suslov.ai@ocean.ru

Given the significant influence of local meteoro-
logical conditions on the distribution and concentra-
tion of pollutants in the Grenoble Valley, it is crucial to
develop accurate predictive models. Forecasting air
pollution levels in urban agglomerations with com-
plex terrain is relevant, as operational forecasts allow
for timely emission reductions and the minimization
of public health risks.

Meteorological conditions play a crucial role in the
formation of PM concentrations in the atmosphere [4,
6–8]. This work pays special attention to temperature
inversion, which strongly correlates with air pollution
levels. Temperature inversion is defined as a layer of
the atmosphere with a positive vertical temperature
gradient ∂T/∂z > 0. In the presence of an inversion,
temperature increases with height, which prevents
vertical air mixing and contributes to the accumula-
tion of pollutants [9].

Large-scale meteorological conditions signifi-
cantly impact temperature inversion formation. The
absence of clouds, low wind speed, and the duration
of the night period contribute to the intensification
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of the Earth’s surface cooling, thereby increasing the
probability of temperature inversion formation. At the
same time, the presence of clouds and wind activity
can destabilize the inversion layer, causing turbulent
mixing of air masses and preventing the formation of
a stable temperature gradient.

Studies on the application of machine learning to
predict air pollution levels, with particular attention to
the effect of temperature inversion on PM concentra-
tions, have been conducted in urban agglomerations
with topography similar to Grenoble [6, 10, 11].

The traditional approach to accounting for inver-
sion involves using temperature differences or tem-
perature gradients at different altitudes and, if data are
available, analyzing the entire temperature profile [6,
7, 12].

In a study conducted in Tehran [13], an artificial
neural network was used to predict PM2.5 concen-
trations, using the intensity of temperature inversion
as a model feature. Inversion is observed up to 70%
of days in Tehran, emphasizing the intensity of in-
versions, measured as the gradient of temperature
change with height. The study showed a significant
influence of this characteristic on PM2.5 concentra-
tions.

Mlakar and Faganeli Pucer [10] presented an orig-
inal method of accounting for inversion by applying a
clustering algorithm to analyze temperature profiles.
The data was divided into 15 categories based on
profile characteristics, allowing hidden patterns to be
identified and determining features most associated
with high PM10 levels. The highest PM concen-
trations corresponded to winter days with forenoon
inversion, low wind speed, and high emissions from
transport and heating.

In addition to inversion layer thickness and tem-
perature differences, Zang et al. [12] considered addi-
tional parameters to improve PM forecast accuracy:
atmospheric optical depth and boundary layer height.
Incorporating these parameters in the machine learn-
ing model significantly improved forecast accuracy.

Tamas et al. [14] applied clustering based on
various meteorological data, including inversion layer
thickness. PM concentration was approximated sep-
arately for each cluster. Comparison of a simple
regression model with a model using preclustered
data showed that SOM and K-means algorithms
significantly improved the accuracy of pollution peak
approximation.

These studies demonstrate various approaches to
using temperature inversion data to improve the ac-
curacy of air pollution prediction models. The meth-
ods include various inversion features ranging from
simple temperature differences at different altitudes
to complex clustering methods. This diversity of

approaches indicates the potential of using different
features characterizing temperature inversion in pre-
dicting air pollution levels. Using machine learn-
ing methods allows us to automatically take into
account complex relationships between the level of
atmospheric pollution and temperature inversion pa-
rameters.

In the present study, we apply machine learning
methods to predict daily average PM2.5 concentra-
tions in the Grenoble Valley for three days. We use
data from 2012 to 2018, including PM concentration
levels and meteorological variables. We also con-
sider additional factors characterizing meteorologi-
cal conditions with an anticyclonic blocking effect.
In particular, we introduced features characterizing
temperature inversion, which strongly correlates with
air pollution levels, as shown [4, 5, 8]. The relation-
ship between anticyclonic blocking and temperature
inversion was demonstrated in [6, 7]. This study uses
temperature differences at various altitudes as tem-
perature inversion. Additionally, we consider various
meteorological variables associated with PM10 and
PM2.5 pollution episodes to improve forecast quality,
such as wind speed, direction, and precipitation.

This approach allows us to study how Grenoble’s
complex topography and local weather conditions af-
fect air pollution dynamics.

By focusing on temperature inversions, we hope
to contribute to a deeper understanding of air quality
forecasting in Grenoble and regions with similar to-
pography. Although local meteorological conditions
largely govern pollution levels, the machine learn-
ing models applied in this study have the potential
to be adapted for other cities located in the low-
lands, particularly in Chelyabinsk [15] and Krasno-
yarsk [16]. The incorporation of temperature inver-
sion data and other meteorological variables in our
model could be especially beneficial for these cities,
as they share similar topographical features (being
located in basins) and face comparable challenges
with air pollution, making our approach particularly
relevant for predicting PM2.5 levels in these urban
environments.

The rest of the paper is organized as follows:
The “Problem Formulation and Data Description”
section describes the dataset collected for our study,
including several data sources, including Les Frenes,
Le Versoud, and Chamrousse weather stations. The
“Machine Learning Problems and Validation” section
outlines the task of predicting air pollution levels in
terms of regression and classification. The “Ma-
chine Learning Models” section describes several
approaches and advanced statistical methods (also
known as machine learning methods) used to predict
air pollution, as well as the procedure for their vali-
dation; the Results section presents the results of our
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Fig. 1. Location of the main meteorological stations in Grenoble.

applied methods. The Conclusions section provides
the conclusions of our work and prospects for further
research.

2. PROBLEM FORMULATION AND DATA

In this study, the problem of forecasting the level
of atmospheric pollution by fine particles of PM2.5 is
solved using two approaches: regression and classifi-
cation. In the regression approach, the daily average
PM concentration level is approximated. In the clas-
sification task, we predict whether the concentrations
exceed the levels established by the WHO 50 μg/m3

for PM10 and 25 μg/m3 for PM2.5.

2.1. Exploratory Data Analysis

We consider the observation station Les Frenes
[17], located at a remote distance from intensive
sources of pollution (production, transport inter-
changes, etc.). Thus, this station’s pollution level
depends mainly on local and large-scale meteorolog-
ical conditions.

The study is based on seven years of data on
meteorological variables (Table 1), with an emphasis
on temperature inversions (temperature differences
at different altitudes). The temperature inversion
intensity is taken into account as the temperature
difference between the Chamrousse (1730 m) and Le
Versoud (220 m) stations. Figure 1 presents Greno-
ble’s map and the location of meteorological stations
used in the current study.

To account for the relationship between anticy-
clonic blocking phenomena and temperature inver-
sion, we introduce converted pressure:

P0 = P − 1013.25 hPa,

P0 is the difference between the measured pressure
P and the normal sea-level pressure 1013.25 hPa. A
high value of P0 > 0 indicates an anticyclonic regime.
Additionally, we use geopotential height (Φ), eastern
(U ), and northern (V ) components of synoptic wind
at the 500 hPa levels to describe the state of the
atmosphere.

The year is divided into winter and summer peri-
ods, depending on the heating season. Table 2 de-
scribes these periods. Exploratory data analysis was
conducted to classify days as polluted and nonpol-
luted based on WHO criteria, categorized by temper-
ature inversion and high atmospheric pressure. The
results of this preliminary study are summarized in
Table 3.

The data in Table 3 show that only 15% of
PM2.5 measurements exceed the WHO threshold
values. Most PM level exceedance (99%, 298 out
of 300 cases) occur during winter, with more than
30% (108 out of 298) cases under a temperature
inversion. Winter average PM2.5 concentrations are
approximately twice as high as summer ones.

Figure 2 shows that days characterized by high
PM concentrations are located in the “heavy tails” of
the target variable distributions, PM10 and PM2.5.

Figure 3 presents a time series of meteorological
variables, where high pollution levels (marked in red)
often coincide with anticyclones (increased pressure)
and the presence of temperature inversion (positive
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PM10, �g/m3 PM2.5, �g/m3

Fig. 2. Distribution of PM10 and PM2.5 concentrations. Episodes where PM concentration exceeds the WHO threshold are
highlighted in red.
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Fig. 3. Time series of meteorological variables. Values for PM10 and PM2.5 exceeding the pollution threshold set by WHO
are shown in red. The dashed line indicates the threshold set by WHO.

temperature difference), predominantly in the winter
period.

In ML, positional encoding is utilized to analyze
cyclical variables such as days of the week or months,
improving the recognition of recurring patterns and
the interpretation of time cycles by ML models. For
days of the week, the following formula is used:

sinday = sin

(
2π × date

7

)
,

cosday = cos

(
2π × date

7

)
.

Cyclic variables for months are calculated in the
same manner:

sinmonth = sin

(
2π × date

12

)
,

cosmonth = cos

(
2π × date

12

)
.
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Table 1. Meteorological variables and their units of mea-
surement

Variable Unit
of measurement

Concentration of PM10 μg/m3

Concentration of PM2.5 μg/m3

T—temperature at versoud ◦C

δT—temperature difference
between Chamrousse and
Versoud

◦C

P0—difference between measured
pressure and sea level pressure hPa

PCPN—precipitation mm

U—eastern component of
synoptic wind at 500 hPa level m/s

V —northern component of
synoptic wind at 500 hPa level m/s

Φ—geopotential height at
500 hPa level

m2/s2

Table 2. Heating seasons and their date ranges

Heating season Date range

Summer period 15.04–14.10

Winter period 15.10–14.04

According to Table 1, each day in the dataset
is characterized by temporary variables (month, day
of the week, season) and meteorological variables:
PM10 and PM2.5 concentrations, temperature in
Versoud (T ), temperature difference between Cham-
rousse and Versoud (δT ), converted pressure (P0),
precipitation (PCPN), eastern (U ) and northern (V )
wind components at the 500 hPa level, and geopo-
tential height at the same level (Φ).

3. MACHINE LEARNING PROBLEMS
AND VALIDATION

3.1. Regression

Generally, the regression problem is formulated as
an approximation of a continuous target variable. In
the present study, the target variable is the predicted
value of the daily average concentration of PM2.5 for
each of the three days in the future from the events
under consideration. In the case of the regression
formulation of the problem, the following metrics are
used to assess the quality of the model:

Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|Pi −Mi| .

Mean Square Error (MSE):

MSE =
1

n

n∑
i=1

(Pi −Mi)
2 .

Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(Pi −Mi)
2,

where P is the model estimate of PM10 or PM2.5
concentration, and M is the measured reference value
of the corresponding concentration.

3.2. Classification
Classification determines whether an event be-

longs to one of the predefined categories, e.g., in the
context of this study, whether a polluted episode will
occur based on WHO criteria:

Output =

{
1, if 〈PM2.5〉24h > 25 μg / m3

0, otherwise.

The data analysis from the Les Frenes weather
station showed a significant imbalance: the percent-
age of days exceeding the WHO pollution thresh-
old was 3.5% for PM10 and 15% for PM2.5. An
unbalanced sample makes it very difficult to predict
elements of an underrepresented class. In the case
of imbalanced classification, the most straightforward
quality assessment metrics, such as Accuracy (pro-
portion of correct answers), are uninformative. Most
quality assessment metrics can be calculated using
the values of the so-called confusion matrix [18].
In this matrix, True Positive (TP) and True Nega-
tive (TN) indicate correctly classified objects of each
class, and False Positive (FP) and False Negative
(FN) indicate type I and type II errors, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
.

Precision is the relation of correctly classified pos-
itive values to actual positives, while Recall is the
relation of actual positive values correctly identified.
In the Results section, we use Recall and F1 score,
the harmonic mean between Precision and Recall:

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

F1 Score = 2× Precision × Recall
Precision + Recall

.
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Table 3. Meteorological characteristics and pollution levels by season

Season PM2.5 Total days High PM2.5
level

Temp. inversion High pressure All three factors
combined

Winter 20 6.25 1015 298 161 789 108

Summer 9.74 5.8 974 2 1 821 0

Table 4. Results for approximation of daily averaged PM2.5 concentrations using increments of meteorological variables
and Gaussian noise

Model
1 day MAE 1 day RMSE 2 days MAE 2 days RMSE 3 days MAE 3 days RMSE

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
ΔCatBoost
(ΔMeteo
+ GN)

3.34 0.54 4.97 0.68 4.74 0.58 6.92 0.88 5.47 0.62 7.84 0.86

ΔCatBoost
(ΔMeteo) 3.38 0.56 5.03 0.68 4.75 0.65 6.91 0.97 5.48 0.70 7.83 0.98

CatBoost
abs. values

3.77 0.96 5.53 1.38 4.91 1.15 7.13 1.68 5.50 1.03 7.92 1.52

Persistence 4.10 0.75 5.93 0.93 5.85 0.92 8.30 1.20 6.58 0.92 9.30 1.11

3.3. Cross-Validation

Cross-validation (CV) is a technique for evaluat-
ing the generalizability of a machine-learning model
on previously unseen data to detect overfitting or
prediction bias. In CV, the data is divided into k
parts: one part is used for testing, and the other k − 1
parts are used for training. This process is repeated
with each test part. The final results are averaged
to estimate the model’s overall performance of the
ML algorithm. The study applies five-fold cross-
validation. Model evaluation includes analysis of
mean values (Mean) and standard deviations (STD)
of quality assessment metrics for classification and
regression problems.

4. MACHINE LEARNING MODELS

The present study implemented air pollution level
prediction using regression and classification ap-
proaches. Heuristic models, including constant and
inertial models, were used to evaluate the baseline
quality, assuming their performance would be lower
than any ML model in this study. Model descriptions
are provided below.

The baseline models, particularly the inertial fore-
cast model, were used to estimate the quality of more
complex models.

The result of the inertial forecast model (Persis-
tence) is the value of PM2.5 pollution levels known
from the dataset from the previous day.

The following algorithms demonstrated the best
performance:

Catboost: A gradient-boosting algorithm de-
veloped by Yandex used in regression and classifi-
cation [19].

Balanced Random Forest (BRF): A modification
of a random forest that can handle unbalanced data
[20].

4.1. Regression Approach

4.1.1. Absolute values approximation. The
target variable, PM concentration, has a skewed dis-
tribution where pollution episodes are located in the
“heavy tail” of distribution (2). In the regression ap-
proach, the approximation of absolute values shows
relatively low accuracy because extreme pollution
events are located in the “tail” of the distribution, and
their approximation presents significant challenges
for statistical modeling.

4.2. Improving Forecast Accuracy Techniques

4.2.1. Target variable increments approxima-
tion. To enhance the accuracy of forecasting in the
regression task and adequately predict the pollution
peaks, instead of using the absolute values of PM10
and PM2.5 concentrations, we analyze the changes
in PM10 and PM2.5 concentrations relative to the
previous day:

ΔPMd−1 = PMd−1 − PMd−2,
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ΔPMd0 = PMd0 − PMd−1,

ΔPMd+1 = PMd+1 − PMd0,

ΔPMd+2 = PMd+2 − PMd+1,

ΔPMd+3 = PMd+3 − PMd+2.

Here, ΔPMd−1 and ΔPMd0 denote differences
in air pollution levels for the previous and current
day, respectively. ΔPMd+1, ΔPMd+2, and ΔPMd+3

represent increments of pollution levels for the next
day (d+ 1), two days ahead (d+ 2), and three days
ahead (d+ 3). PMd−1, PMd0, PMd+1, PMd+2,
and PMd+3 are PM concentrations for the previous
day (d− 1), current day (d0), next day (d+ 1), two
days ahead (d+ 2), and three days ahead (d+ 3),
respectively.

PMd+1 = PMd0 +ΔPMd+1,

PMd+2 = PMd0 +ΔPMd+1 +ΔPMd+2,

PMd+3 = PMd0 +ΔPMd+1 +ΔPMd+2

+ΔPMd+3.

4.2.2. Meteorological variables increments.
In order to improve the efficiency of pollution peak
forecasting, we use both the value of meteorological
variables and their changes over time. To improve the
approximation accuracy, increments of meteorologi-
cal variables were added to the training data set of the
MO model, namely:

ΔT(d−1),ΔT(d0),ΔδT(d−1),

ΔδT(d0),ΔP0(d−1),ΔP0(d0),

ΔU(d−1),ΔU(d0),ΔV(d−1),ΔV(d0),ΔΦ(d−1),ΔΦ(d0).

Increments of meteorological variables were used
in both regression and classification tasks.

4.2.3. Artificial data augmentation. Data
augmentation with random noise involves adding
Gaussian noise to the original dataset, enhancing the
model’s ability to generalize by simulating variations
in the data. This technique is particularly useful for
creating additional training examples in cases where
the dataset is limited, helping to prevent overfitting
and improve the robustness of machine learning
models.

To increase the training sample size, the classical
augmentation technique is used. We add similar
examples to existing data with the addition of random
Gaussian noise. This technique has been used for
both regression and classification problems. For each
meteorological variable xi, the augmented value x′

i is
calculated by adding Gaussian noise:

x′
i = xi + ε, where ε ∼ N

(
0,

σxi

c

)
,

where xi is the original value of the meteorologi-
cal variable, and ε represents Gaussian noise with

Mean = 0 and standard deviation
σxi
c . σxi is the

standard deviation of xi, and c is a noise scaling
factor. In our study, c = 10.

For variables like precipitation (PCPN), negative
values are not physically meaningful. Therefore, the
augmentation process ensured that the augmented
value remained nonnegative:

x′
i =

{
xi + ε, if xi > 0

0, if xi ≤ 0.

4.3. Classification Approach

To address unbalanced data, techniques such as
upsampling of the minority class were used. Specif-
ically, data from the winter period characterized by
the highest concentration of PM2.5, 01.11-31.03
were extracted and augmented to expand the training
dataset. This process involves creating noisy ver-
sions of the original winter data by adding Gaussian
noise, as described in the previous subsection. This
augmentation is repeated twice (the number is deter-
mined empirically). This allows for a significant in-
crease in the representation of days with high PM2.5
concentrations. A condition is imposed to prevent
data leakage during the augmentation process so
that the augmented data in each fold are generated
only from indices not included in the test dataset at
a given iteration of that fold. This approach prevents
the model from accessing information from the test
set during training, thereby preserving the integrity
of the cross-validation process. The inclusion of
these extended datasets, along with the original
training data, significantly improved the robustness
and generalizability of the model and allowed machine
learning models to be trained more efficiently on
unbalanced data. Another approach is to employ a
weighted loss function. In this method, a multiplica-
tive weight is assigned to each predicted value. A
higher weight is assigned to values with significant
errors, while a lower weight is assigned to those with
lower errors. By default, all items belonging to each
class have the same weight, typically set to 1. In
this study, identifying the majority class (PM levels
exceeding the WHO threshold) is more important
than the minority class. Statistically, upsampling and
the use of a weighted loss function are equivalent.

4.4. Regression Results

4.4.1. Target variable increments approxi-
mation. Hereinafter, abbreviations related to the
problem formulation and model input data will be
used: CatBoost abs. values—regression problem in
the formulation of forecasting absolute PM values,
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Table 5. Improvement in regression quality metrics depending on problem formulation and feature description of the
events; averaged over three days

Model comparison MAE error reduction
(average %)

RMSE error reduction
(average %)

ΔCatBoost (ΔMeteo + GN) vs CatBoost abs. values 5.14% 4.69%

Table 6. F1-score metric results for classification

Model
1 day F1 2 days F1 3 days F1

Mean Std Mean Std Mean Std

CatBoost binary (ΔMeteo GN) 0.77 0.07 0.64 0.10 0.59 0.12

CatBoost (ΔMeteo GN) 0.76 0.09 0.67 0.10 0.62 0.10

BRF (ΔMeteo GN) 0.74 0.07 0.67 0.09 0.63 0.08

Persistence 0.75 0.06 0.62 0.11 0.55 0.14

Table 7. Recall results for classification

Model
1 day Recall 2 days Recall 3 days Recall

Mean Std Mean Std Mean Std

CatBoost binary (ΔMeteo GN) 0.74 0.07 0.62 0.11 0.57 0.15

CatBoost (ΔMeteo GN) 0.85 0.07 0.78 0.10 0.73 0.10

BRF (ΔMeteo GN) 0.88 0.04 0.82 0.07 0.78 0.10

Persistence 0.74 0.06 0.62 0.11 0.55 0.14

Table 8. δT impact on daily average PM2.5 concentration forecast quality

Metrics Improvement, %
1 day 2 days 3 days

MAE RMSE MAE RMSE MAE RMSE

Improvement 0.82% 1.01% 1% 0.83% 0.97% 0.78%

ΔCatBoost—regression problem in the formulation
of PM increments approximation ΔPM , ΔMeteo—
the usage of meteorological variables increments in
the model input data, GN—introduction of Gaussian
noise in the model input data, CatBoost binary—the
binary transformation of the regression results:

Output =

{
1, if 〈PM2.5〉24h > 25 μg / m3

0, otherwise.

In this study, the daily averaged PM2.5 value
increments were approximated between consecutive
days. The CatBoost model showed the best result us-
ing increments of meteorological variables and Gaus-
sian noise augmentation. Figure 4 shows the approx-

imation of PM2.5 concentration level increments for
the CatBoost model.

4.4.2. Regression quality metrics improve-
ment. Tables 4 and 5 show that approximating PM
increments between consecutive days improved the
quality of all models in the presence of high pollu-
tion levels. The MAE and RMSE metrics decreased
about 5%. However, there is a lag between the
approximated and actual values over time. The model
cannot accurately predict a sudden increase in PM
concentration after more than a day and is unable
to adequately approximate the initial value of the
changed PM concentration.

4.4.3. Significance of temperature inversion
features. The study evaluated the impact of the
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(a)

(b)

(c)

Fig. 4. Typical behavior of the CatBoost model in the task of predicting increments of PM2.5 pollution level for (a) one day
ahead, (b) two days ahead, and (c) three days ahead. The orange line shows the measured values and the blue line indicates
the approximated values.

temperature difference (δT ) feature on the daily av-
eraged PM2.5 concentration prediction quality. In
order to evaluate the impact of the temperature dif-
ference variable, a CatBoost model was trained with
the parameter δT in the model input data. Then,
the temperature difference was eliminated from the
dataset, and the same model was re-trained without
this parameter. The results are presented in Table 8.

4.5. Classification Results
In the classification problem, two primary per-

formance metrics were used: F1-score and Recall.
These metrics were calculated for predictions made
one, two, and three days ahead. The results for both
metrics are shown in Tables 6 and 7.

Based on Tables 6 and 7, one can conclude that
the choice of machine learning model depends on
the quality metrics. For the Accuracy metric, the
CatBoost model is the most effective. For crisis
events prediction where the cost of error is high, the
Balanced Random Forest model is preferred, but the
probability of type I error increases with the number
of correctly identified polluted episodes.

5. CONCLUSIONS
In this study, based on meteorological data from

previous days, the average PM2.5 daily concentra-
tions were predicted for three days ahead. The Cat-
Boost algorithm showed the highest efficiency for

approximating pollution peaks. For imbalanced clas-
sification, CatBoost and balanced random forest per-
formed the best. Changing the problem formulation
from predicting absolute PM concentration values to
the approximation of their increments between con-
secutive days improved the forecast accuracy. Ac-
counting for meteorological variable increments also
improved the quality of the forecast in both classifi-
cation and regression formulation. Augmenting the
training sample with Gaussian noise improved the
forecast accuracy in both approaches. Including the
temperature difference parameter in the input data of
ML models improved the approximation accuracy by
only 1%, partially supporting already published stud-
ies. Presumably, the temperature (T) and converted
pressure (P0) features strongly correlate with temper-
ature differences. Using a weighted loss function in
the classification task allowed us to classify polluted
episodes more precisely. The number of correctly
classified polluted days increased as the probability of
type I errors increased.
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