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Abstract—The tunability of physical properties in transition metal dichalcogenides (TMDCs) through
point defect engineering offers significant potential for the development of next-generation optoelectronic
and high-tech applications. Building upon prior work on machine learning-driven material design, this
study focuses on the systematic introduction and manipulation of point defects in MoSy to tailor their
properties. Leveraging a comprehensive dataset generated via density functional theory (DFT) calcu-
lations, we explore the effects of various defect types and concentrations on the material characteristics
of TMDCs. Our methodology integrates the use of pretrained large language models to generate defect
configurations, enabling efficient predictions of defect-induced property modifications. This research differs
from traditional methods of material generation and discovery by utilizing the latest advances in transformer
model architecture, which have proven to be efficient and accurate discrete predictors. In contrast to
high-throughput methods where configurations are generated randomly and then screened based on their
physical properties, our approach not only enhances the understanding of defect-property relationships
in TMDCs but also provides a robust framework for designing materials with bespoke properties. This

facilitates the advancement of materials science and technology.
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1. INTRODUCTION

Transition metal dichalcogenides (TMDCs) are a
promising class of materials that have garnered sig-
nificant attention in recent years due to their unique
structural and electronic properties [1, 2]. Composed
of transition metals such as molybdenum (Mo) and
tungsten (W), and chalcogen elements like sulfur(S),
selenium (Se), and tellurium (Te), TMDCs possess
a layered structure analogous to that of graphene
[1]. This structure is characterized by strong covalent
bonds within the layers and weak van der Waals forces
between them, facilitating exfoliation into monolayers
and enabling diverse applications.

TMDCs encompass a wide spectrum of properties
from metallic to semiconducting behaviors. This ver-
satility makes them a focal point for research in elec-
tronic and optoelectronic devices. TMDCs can intro-
duce localized states in the bandgap, which signifi-
cantly affect conductivity and carrier mobility. Such
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modifications are critical for optimizing the perfor-
mance of electronic devices and tailoring their prop-
erties for specific applications.

The optical properties of TMDCs are equally sig-
nificant, influencing photoluminescence and absorp-
tion spectra. These properties are crucial for opto-
electronic applications such as photodetectors, solar
cells, and light-emitting devices. TMDCs exhibit
strong light-matter interactions, positioning them as
promising candidates for these technologies. Fur-
thermore, their bandgap can be tuned by altering their
thickness, opening avenues for tailored optoelectronic
properties.

In addition to their electronic and optical ver-
satility, TMDCs exhibit high mechanical flexibility
and strength, which are essential attributes for the
development of flexible and wearable electronic de-
vices. Point defects within TMDCs can affect their
mechanical properties, influencing both the strength
and flexibility of the material. These mechanical
properties, combined with their electronic and optical
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characteristics, underscore the potential of TMDCs
in next-generation flexible electronics and photonics.

The engineering of materials with precise prop-
erties is a central goal in contemporary materials
science, and the study of two-dimensional (2D)
materials, such as transition metal dichalcogenides
(TMDCs), provides unique opportunities to achieve
this. TMDCs exhibit a remarkable susceptibility to
modifications through chemical alterations, partic-
ularly through the introduction of defects. These
defects, which can be incorporated as adatoms on
surfaces or as substitutions within the crystal lattice,
play a crucial role in tailoring material properties and
broadening their application potential.

In TMDCs, defects significantly influence elec-
tronic properties by introducing localized states
within the bandgap. These states can affect charge
transport by serving as traps or scattering cen-
ters, thereby altering conductivity and carrier mo-
bility.  Such modifications are essential for opti-
mizing TMDCs in electronic applications, such as
transistors and sensors, where specific electronic
characteristics are required.

Defects also have a profound impact on the optical
properties of TMDCs. By affecting exciton recom-
bination pathways, defects can alter photolumines-
cence and absorption spectra, which is vital for op-
toelectronic applications, including photodetectors,
solar cells, and light-emitting devices. The ability
to precisely control defect types and concentrations
enables the tuning of optical responses, enhancing
efficiency and functionality in these technologies.

Moreover, defects influence the mechanical prop-
erties of TMDCs, affecting their strength and flexibil-
ity. Defects can serve as stress concentration sites or
facilitate deformation, impacting the material’s me-
chanical integrity and pliability. Engineering defects
is crucial for the development of flexible electronics,
where materials must maintain robustness while en-
during bending and stretching.

Despite the potential of defect engineering in
TMDCs, predicting the effects of defects remains
challenging due to the vast configurational space and
complex quantum mechanical interactions involved.
Advances in computational methods, such as high-
throughput simulations and machine learning, are
being utilized to tackle these challenges. However,
the prediction of defect properties using machine
learning is limited by the availability of comprehen-
sive datasets and the complexity of quantum state
predictions.

In order to engineer crystals with specific physi-
cal attributes, a comprehensive dataset covering the
defect configuration space is provided by our previous
research [3]. This dataset enables creation of more
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accurate machine learning models, facilitating the
exploration and optimization of material properties
for emerging technologies. In this work, we pro-
pose a new application of an open source pretrained
large language model to generate defects configu-
ration conditioned on physical properties. We show
promising results in the domain of defects engineer-
ing and possibly even full crystal structure generation.
We hope this research will set the scene for further
LLMs applications in crystal defects generation.

1.1. Purpose and Objective

The primary purpose of this work is to advance
the understanding and engineering of transition metal
dichalcogenides (TMDCs) by leveraging computa-
tional methods to predict and tailor material proper-
ties through defect engineering. This research aims to
address the growing demand for materials with spe-
cific electronic, optical, and mechanical characteris-
tics by providing a systematic approach to designing
TMDCs with tailored defects that meet predefined
property criteria. The objective of this study is to
develop a framework that enables the generation of
crystal structures with defects that satisfy specific
target properties. These properties include key elec-
tronic and physical attributes such as energy lev-
els, the highest occupied molecular orbital (HOMO),
the lowest unoccupied molecular orbital (LUMO),
bandgap, formation energy, and other relevant phys-
ical characteristics. By achieving this objective, the
work seeks to facilitate the design of TMDCs for
targeted applications in electronics, optoelectronics,
and flexible devices.

The model uses several inputs to guide the de-
sign of TMDCs with desired defect configurations.
These inputs include energy levels, which influence
the stability and reactivity of the crystal structure.
The highest occupied and lowest unoccupied molec-
ular orbitals (HOMO and LUMO) are crucial for un-
derstanding the electronic properties of the material,
such as conductivity and reactivity. The bandgap,
defined as the energy difference between the HOMO
and LUMO, determines the material’s semiconduct-
ing properties and its suitability for electronic and
optoelectronic applications. Formation energy, the
energy required to form a defect within the crystal
lattice, is essential for assessing the feasibility and
stability of defect configurations. Other physical at-
tributes, such as mechanical strength, flexibility, and
optical characteristics, may also influence the mate-
rial’s performance.

The core objective of this work is to utilize these
inputs to generate crystal structures with defects that
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satisfy the specified properties. By developing and ap-
plying advanced machine learning models and com-
putational techniques, the study aims to predict and
optimize the configuration of defects within TMDCs
to achieve the desired performance characteristics.
The successful realization of this objective will enable
the rational design of materials with tailored proper-
ties, thereby accelerating the discovery and develop-
ment of next-generation materials for various techno-
logical applications.

This paper explores the engineering of point de-
fects in molybdenum disulfide (Mo0Ss), a represen-
tative TMDC, to tailor its material properties using
large language models (LLMs). By manipulating
point defects, we aim to enhance the functional prop-
erties of MoSs, for specific technological applications,
leveraging advanced computational tools to guide ex-
perimental efforts and optimize material performance.

2. RELATED WORK

One of the first works that explores property
prediction with LLMs is [4]. The authors introduce
a novel dataset which contains instructions in natural
language for molecule and protein design. This
dataset aims to enhance models understanding of
biolmolecular features. Approaches to molecular
property prediction with LLLMs are introduced in [5].
MolecularGPT, a fine-tuned language model that
is trained on over 1000 property prediction tasks,
is presented in this paper. The scope of the tasks
the model can perform accurately is claimed to be
narrowed down by zero- and few-shot prompting.

Since crystal structures can be represented as
graphs with a minimum unit cell repeating itself on
a regular lattice in 3D space, graph neural networks
(GNNSs) were studied for property prediction previ-
ously [6]. However, the complexities of representing
crystals structure nuances and incorporating impor-
tant information, such as bond angles [7], have hin-
dered the practical application GNNs in the property
prediction task.

GNNs are found to be overperformed by LLMs
in [8] in the task if physical and electronic property
prediction of crystals. LLM-Prop, a method based on
language models, is presented in this work as one that
is able to predict the band gap, classify whether it as
direct or indirect, and predicting unit cell volume.

Inorganic compounds, such as crystals, can be
described using the Crystallographic Information File
(CIF) format. This text contains the information on
structural properties of the crystals. The work [9] ex-
plores prediction of new crystals by fine-tuning LLLMs
on CIF format data. It is found that CrystaLLM,
a novel method for generating crystal structures, is
capable of producing new valid crystal structures.

AL-MAEENI et al.

High public interest in natural language process-
ing has pushed the progress in LLMs, including the
open distribution of the largest models weights. The
models with billions of parameters potentially contain
most of the knowledge available online that can be
leveraged to make further discoveries. The capabil-
ities of fine-tuned Llama-2 with 70B parameters are
explored in [10]. The authors fine-tune this LLM
on the tasks of generation of stable materials and
infilling of partial structures. The stability rate of
the generated materials is reported to be doubled in
comparison with a diffusion model.

3. METHODS
3.1. 2DMD, a 2D Material Defect Dataset

In this study, we utilize a comprehensive dataset
of 2D material defects to train and evaluate ma-
chine learning models aimed at predicting structure-
property relationships. The dataset, referred to as
the 2D Material Defect Database (2DMD) [3], is
designed to support a wide range of tasks, including
the development of predictive models for electronic,
optical, and mechanical properties of 2D materials.
By providing a robust foundation for machine learning
training, the dataset facilitates the exploration and
optimization of material properties tailored for specific
applications.

The 2DMD dataset includes defect information for
several widely studied 2D materials, namely molyb-
denum disulfide (M0Sy), tungsten diselenide (WSey),
hexagonal boron nitride (h-BN), gallium selenide
(GaSe), indium selenide (InSe), and black phospho-
rus (BP). These materials were selected due to their
significant potential in electronic, optoelectronic, and
flexible device applications. By focusing on these key
materials, the dataset addresses a broad spectrum of
material properties and defect configurations.

The dataset is divided into two primary parts, each
representing different defect concentration scenarios:
low defect concentration and high defect concentra-
tion. The low defect concentration dataset comprises
structured configurations, focusing on systematic de-
fect placement within the crystal lattice. This part of
the dataset includes 5933 structures each for MoS,
and WSey, utilizing an 8 x 8 supercell configuration.
The low defect concentration structures are meticu-
lously crafted to explore the impact of isolated defects
on material properties. These configurations provide
insights into how single or few defects can alter elec-
tronic, optical, and mechanical behaviors, serving as
a critical resource for understanding defect-material
interactions. The defect types in the low density part
of the dataset is described by Fig. 1.
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In contrast, the high defect concentration dataset
consists of randomly generated configurations, fea-
turing a higher density of defects within the crystal
lattice. These configurations include both substitu-
tion and vacancy defects, reflecting more complex and
disordered systems. By examining these structures,
researchers can investigate the collective effects of
multiple defects and the resulting modifications in
material properties. This part of the dataset enables
the study of defect interactions and their influence on
material performance under more realistic and chal-
lenging conditions.

Overall, the 2DMD dataset contains 14 866 dis-
tinct structures, each composed of 120 to 192 atoms.
This extensive collection captures a wide variety of
defect types, configurations, and concentrations, of-
fering a comprehensive view of defect effects in 2D
materials. The dataset is meticulously curated to
ensure diversity and representation of different defect
scenarios, providing a valuable resource for training
advanced machine learning models. A sample of
defects from the dataset can be found in Fig. 1.

The 2DMD dataset is instrumental for train-
ing machine learning models capable of predicting
structure-property relationships in 2D materials. By
leveraging this dataset, models can be developed to
forecast key properties such as bandgap, conduc-
tivity, photoluminescence, and mechanical strength.
The insights gained from these predictions can guide
experimental efforts and accelerate the discovery and
design of 2D materials with tailored properties for
specific technological applications.

Furthermore, the dataset allows for the evaluation
of machine learning methods, allowing researchers to
benchmark and improve algorithms for defect prop-
erty prediction. The comprehensive nature of the
dataset, combined with its focus on diverse defect
configurations, makes it an invaluable tool for ad-
vancing the field of 2D material research and the
development of innovative materials for future tech-
nologies.

3.2. Methodology

The approach utilized in this study integrates ad-
vanced machine learning techniques with the Llama-
3 large language model [11] to predict and generate
crystal structures of transition metal dichalcogenides
(TMDCs) with tailored defects. By leveraging the
capabilities of large language models, this method
aims to efficiently explore the vast configuration space
of defects and optimize material properties for specific
applications. We employ the largest [Llama-3 avail-
able at the time of writing with 70B parameters. This
choice is driven by the fact that this model has scored
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the highest out of all other Llama models on natural
language benchmarks [11].

A parameter-efficient fine-tuning method, known
as low-rank adaptation of large language models
(LoRA)[12], was employed to adapt the Llama model
to the specific task of crystal structure generation.
LoRA enables efficient fine-tuning by injecting rank
decomposition matrices into every transformer layer
and reducing the number of trainable parameters,
thereby allowing the model to learn relevant features
from a subset of the Crystallographic Information File
(CIF) data. This fine-tuning process is critical for
aligning the model’s capabilities with the domain-
specific requirements of TMDC defect engineering.
Table 1 describes the fine-tuning hyperparameter
setup.

To facilitate the training of the Llama model, we
construct an instruction dataset based on the 2D
Material Defect Database (2DMD). An instruction
sample can be found in Fig. 3. This dataset in-
cludes detailed descriptions of crystal structures, de-
fect substitution rules, and associated properties. The
dataset captures various defect types and configu-
rations, along with their restrictions and impact on
material properties. These instructions serve as the
foundation for generating new crystal structures with
desired attributes.

To enhance the robustness and generalizability of
the model, data augmentation techniques were ap-
plied. Random rotations are used to generate diverse
orientations of crystal structures, simulating real-
world variations and increasing the model’s expo-
sure to different configurations. Additionally, physical
properties were randomly sampled to provide a wide
range of target attributes for model training, allowing
the model to learn associations between structural
features and material properties.

The inference process involves using the fine-
tuned Llama model to generate new crystal struc-
tures based on input instructions and masked co-
ordinates. The model receives detailed instructions
specifying the types of defects, any restrictions on
their configurations, and target physical properties.
[t then generates the corresponding coordinates of
the crystal structure, which are parsed to create a
viable model of the material. We run the inference
through the VLLM framework [13] to speed up the
generation. The inference hyperparameters are listed
in the Table 2.

Once the coordinates are generated, the energies
of the resulting structures are calculated using a sur-
rogate model 3.3. This step involves evaluating the
stability and feasibility of the predicted structures,
ensuring that the generated configurations meet the
desired energy criteria and other specified properties.
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Fig. 1. Defect types in low density dataset. The “Mo” and two “S” columns denote the the type of site that is being perturbed
either by substituting the listed element, or a vacancy (vac). “Num” column contains the number of structures with defects of
the type in the dataset. Finally, “Example” column presents a structure with such defect. Figure is taken from our previous

work [17].

The use of a surrogate model allows for efficient en-
ergy calculations, facilitating rapid assessment of a
large number of potential structures.

3.3. Property Prediction

The properties of the generated crystals in this
study have been calculated using a surrogate model
that integrates a simplified line-input crystal-enco-
ding system (SLICES) [14] with gradient boosted

decision trees. This approach leverages the principles
of quotient graphs and Eon’s method [15] for re-
constructing crystal structures, specifically utilizing
Euclidean embeddings of periodic nets to provide a
topologically induced complete set of geometric de-
scriptors for crystal structures.

The SLICES methodology is designed to effi-
ciently encode crystal structures by capturing their
essential periodic characteristics. It uses quotient
graphs to represent the repeating units and their con-
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Fig. 2. MoS, crystal containing different defect config-
urations. The orange atoms refer to sulfur atoms sub-
stituted by selenium. The blue atoms are molybdenum
atoms substituted with tungsten.

nectivity within the crystal lattice. This allows for a
compact and precise representation of periodic crys-
tals, which is crucial for handling the inherent com-
plexity of these materials.

Quotient graphs are particularly effective in this
context because they reduce the infinite repetition of
periodic crystals to a finite and manageable form. By
focusing on the fundamental repeating units, quotient
graphs capture the essence of the crystal’s topology
and symmetry. Eon’s method complements this by
reconstructing these structures into Euclidean space,
ensuring that the generated embeddings maintain
their geometric and topological integrity.

To predict the properties of the encoded crystal
structures, CatBoost [16], an implementation of gra-
dient boosted decision trees, is employed. CatBoost is
chosen for its ability to model complex nonlinear re-
lationships and handle heterogeneous data efficiently.
[t excels in scenarios where categorical features are
present and is robust against overfitting, making it
suitable for predicting the diverse properties of defect
engineered crystals.

Gradient boosted decision trees work by creating
an ensemble of decision trees, where each tree is
trained to correct the errors of its predecessor. This
iterative process leads to a model that can capture
intricate patterns in the data, resulting in accurate
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, unitcell of
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"to’: 'Se’}

{"type’: 'substitution’, ’from’: ’'Mo’,
"to’: 'W'}

{"type’: ’vacancy’, ’'element’: 'Mo’}
{"type’: ’vacancy’, ’'element’: ’'S’}.

The material has the following properties:
—-The formation energy per atom is 6.1508.

—The energy per atom is —-8.6699.

—The Fermi level is -4.1761.

Generate defects in the crystal structure,
of the following types (vacancy,
substitutional) .

You are only allowed to change the atom
symbol (in the case of vacancy replace it
with VAC) without changing anything else.
Crystal structure:
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Fig. 3. A sample of instruction for LLM fine-tuning.

predictions. In this study, the SLICES crystal line
strings, which encapsulate the encoded structure of
crystals, are used as inputs for the CatBoost model.
The model predicts various physical properties, in-
cluding energy states, by learning from the encoded
data.

The process begins with the generation of a crystal
structure, which is then encoded into a line string
using the SLICES method. This encoding captures
the key structural features and periodicity of the crys-
tal. The encoded line string is subsequently input into
the CatBoost model, which predicts the desired prop-
erties. These properties include electronic, optical,
and mechanical characteristics, which are critical for
evaluating the potential applications of the generated
crystals.

The integration of SLICES and CatBoost offers
several advantages. It allows for the efficient ex-
ploration of the vast chemical space associated with
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Table 1. Fine-tuning hyperparameters

Parameter Value
Learning rate le—4
Learning rate scheduler Cosine
Number of epochs 10
LoRA rank 8
LoRA dropout 0.05

Table 2. Inference hyperparameters
Parameter Value
Temperature 1.0
Top_p 0.9
LoRA alpha 32

Table 3. Property quality estimation of the generated de-
fects configurations using surrogate model

Property R? RMSE
Homo—Lumo gap 0.98 0.05
Homo 0.95 0.06
Lumo 0.82 0.06
Formation energy per site 0.99 0.07

defect-engineered crystals, facilitating the discovery
of materials with tailored properties. Furthermore,
the approach is scalable and can be applied to a wide
range of crystal structures, making it a versatile tool
for materials science research.

In summary, this surrogate model, combining
SLICES and CatBoost, provides a powerful frame-
work for predicting the properties of generated crys-
tals. By leveraging the strengths of quotient graphs
and machine learning, the model enables accurate
and efficient evaluation of crystal properties, paving
the way for the development of advanced materials
with engineered defects.

4. RESULTS

The surrogate model is used to evaluate the quality
of the dataset comprising 6000 synthetically gener-
ated MoS,, crystals with varied defect concentrations
The evaluation and results of the surrogate model
applied to a dataset comprising 6000 synthetically
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generated MoSs crystals with varied defect concen-
trations. The surrogate model is tasked with pre-
dicting several crystal properties, and its performance
was gauged using refined statistical metrics focused
on the top-performing predictions.

The evaluation of the surrogate model’s predic-
tions is confined to the top 25% of predictions with
the lowest mean squared error (MSE), in other words
structures with large error values are ignored due to
the low fidelity of our surrogate model. The perfor-
mance metrics used are R? and root mean square
error (RMSE), calculated as follows:

R? (coefficient of determination):

~\2
R%.., =1— 2ier (Wi — i) {il(yi—9i)*<Qo.25}
25th

2ier (Wi = Y251h) il (i —5)2<Qo.25}
where y; is the observed value, g; is the predicted
value, and yos5, is the 25th percentile of observed
values. This metric reflects the proportion of the vari-
ance in the dependent variable that is predictable from
the independent variables, specifically focusing on the
subset of data with the most accurate predictions.
RMSE (root mean square error):

1 .
RMSEysin = \/m Z (i — yi)2{i|(yi—z7i)2§.Qo425}'
iel

This metric provides a measure of the average magni-
tude of the prediction errors, scaled specifically for the
best-performing subset of the data.

The surrogate model demonstrated robust pre-
dictive performance across various crystal proper-
ties. For instance, the formation energy per site
exhibited an R? of 0.99 and an RMSE of 0.07,
indicating near-perfect predictive accuracy within
the most reliable quartile of predictions. Similar
high-performance metrics were observed for other
properties, see Table 4.

The scatter plots (Fig. 4) visually articulate the
distribution and accuracy of predictions. Points are
color-coded to distinguish between predictions on
generated crystals (blue) and those on the test set
(red). Structures with higher MSE have been rep-
resented with reduced opacity and size, which visu-
ally segregates them from more accurate predictions,
thus allowing for a quick visual assessment of model
performance spread.

This detailed statistical and visual analysis con-
firms the efficacy of the surrogate model in accurately
predicting properties of MoSy crystals, particularly
emphasizing its reliability for the best-predicted sub-
set of data. The model not only serves as a tool for
rapid screening of crystal properties but also high-
lights the potential for predictive models in guiding
synthetic strategies and understanding material be-
havior under varying conditions.
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Fig. 4. 6000 generated MoS3 crystals containing different defect concentrations evaluated with surrogate model. Structures
with high MSE from the target property have reduced opacity and size.

5. DISCUSSION

The decision to employ LoRA (low-rank adap-
tation) instead of full fine-tuning for adapting large
language models (LLMs) to our specific task of pre-
dicting crystal properties was driven primarily by con-
siderations of computational efficiency. LoRA allows
for modifying only a small portion of the model’s
weights—specifically, low—rank matrices—thus sig-
nificantly reducing the computational resources re-
quired for training and inference. This approach
maintains the pretrained knowledge of the LLM while
allowing sufficient flexibility to learn taskspecific nu-
ances, thereby offering a balance between perfor-
mance and efficiency.

Large language models, particularly those fine-
tuned for specialized domains, have shown remark-
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able capacity to categorize and predict based on
structured data, such as defect configurations in
materials science. Our model leverages the ability
to classify potential defects into a limited number
of defect classes. Since these classes can be topo-
logically equivalent, the model learns to recognize
these equivalences and map each class to specific
physical attributes. This capability is akin to how
LLMs manage language: by recognizing patterns
and mapping them to meanings, albeit here the
“meanings” are physical properties linked to specific
structural defects.

The decision not to train directly on Simplified
Line-Input Crystal-Encoding System (SLICES)
and instead use Crystallographic Information File
(CIF) formats was informed by the limitations of
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the existing algorithms within the scope of Eon’s
theory on Euclidean embeddings of periodic nets.
Eon’s method is designed for fully connected crystal
graphs with a translation vector rank of three or
higher. Given that transition metal dichalcogenides
(TMDCs) like MoS, are two dimensional materi-
als with a translation vector rank of two, they fall
outside the applicability of Eon’s embedding method.
This limitation is critical as the reconstruction
algorithm of SLICES, based on these embeddings,
fails to support low-dimensional materials, necessi-
tating the use of CIF, which does not rely on these
embeddings.

The choice to utilize the LLlama-3 model for this
task was guided by several considerations. Firstly,
Llama models are at the forefront of performance
among open-source large language models, ensuring
state of the art results. Additionally, the Llama-
3 model’s approach to tokenizing numbers treating
digits individually provides a more granular and,
consequently, potentially more precise handling of
numerical data common in material science datasets.
This characteristic makes Llama particularly
suitable for tasks involving detailed quantitative
predictions, such as those required for accurately
mapping defect types to their physical impacts in
crystal structures.

These methodological choices collectively enable
the effective application of advanced Al techniques
to the domain of material science, specifically in
the modeling and prediction of physical properties
based on structural defects in crystals. The adoption
of these advanced computational strategies ensures
both efficiency and high fidelity in predictions, essen-
tial for advancing materials design and characteriza-
tion.

ACKNOWLEDGMENTS

The article was prepared within the framework of
the project “Mirror Laboratories” of the HSE Univer-
sity, RF.

FUNDING

This work was supported by ongoing institutional
funding. No additional grants to carry out or direct
this particular research were obtained.

CONFLICT OF INTEREST

The authors of this work declare that they have no
conflicts of interest.

1.

10.

11.

12.

13.

AL-MAEENI et al.

REFERENCES

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Cole-
man, and M. S. Strano, Nat. Nanotechnol. 7, 699
(2012).

https://doi.org/10.1038/nnano.2012.193

S. Manzeli, D. Ovchinnikov, D. Pasquier,
O. V. Yazyev, and A. Kis, Nat. Rev. Mater. 2,
17033 (2017).
https://doi.org/10.1038/natrevmats.2017.33

P. Huang, R. Lukin, M. Faleev, N. Kazeev, A. R. Al-
Maeeni, D. V. Andreeva, A. Ustyuzhanin, A. Tor-
masov, A. H. Castro Neto, and K. S. Novoselov, npj
2D Mater. Appl. 7, 6 (2023).
https://doi.org/10.1038/s41699-023-00369- 1

Y. Fang, X. Liang, N. Zhang, K. Liu, R. Huang,
Z. Chen, X. Fan, and H. Chen, arXiv Preprint (2023).
https://doi.org/10.48550/arXiv.2306.08018

Y. Liu, S. Ding, S. Zhou, W. Fan, and Q. Tan, arXiv
Preprint (2024).
https://doi.org/10.48550/arXiv.2406.12950

K. Yan, Y. Liu, Y. Lin, and S. Ji, in Advances in
Neural Information Processing Systems, Ed. by
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (Curran Associates, 2022),
Vol. 35, p. 15066.

https://proceedings.neurips.cc/paper_files/pa-
per/2022/file/  6145c70a4a4bi353a31ac5496a72a-
72d-Paper-Conference.pdf.

. K. Choudhary and B. Decost, npj Comput. Mater. 7,

185 (2021).
https://doi.org/10.1038/541524-021-00650- 1

A. N. Rubungo, C. Arnold, B. P. Rand, and A. B. Di-
eng, arXiv Preprint (2023).
https://doi.org/10.48550/arXiv.2310.14029

L. M. Antunes, K. T. Butler, and R. Grau-Crespo,
arXiv Preprint (2023).
https://doi.org/10.48550/arXiv.2307.04340

N. Gruver, A. Sriram, A. Madotto, A. G. Wilson,
C. L. Zitnick, and Z. Ulissi, arXiv Preprint (2024).
https://doi.org/10.48550/arXiv.2402.04379

Al@Meta, Llama 3 Model Card (2024).

https://github.com/meta-llama/llama3/blob/main/
MODEL_CARD.md.

E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li,
S. Wang, L. Wang, and W. Chen, arXiv Preprint
(2021).

https://doi.org/10.48550/arXiv.2106.09685

W. Kwon, Zh. Li, S. Zhuang, Yi. Sheng, L. Zheng,
C. H. Yu, J. Gonzalez, H. Zhang, and 1. Stoica, in
Proceedings of the 29th Symposium on Operating
Systems Principles, Koblenz, Germany, 2023 (As-
sociation for Computing Machinery, New York, 2023),
p.611.

https://doi.org/10.1145/3600006.3613165

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol.79 Suppl. 2 2024



14.

15.

16.

17.

ENGINEERING POINT DEFECTS S827

H. Xiao, R. Li, X. Shi, Ya. Chen, L. Zhu, X. Chen, and
L. Wang, Nat. Commun. 14, 7027 (2023).

https://doi.org/10.1038/s41467-023-42870-7

J.-G. Eon, Acta Crystallogr., Sect. A: Found. Crys-
tallogr. 67, 68 (2011).
https://doi.org/10.1107/s0108767310042832

A. V. Dorogush, V. Ershov, and A. Gulin, arXiv
Preprint (2018).
https://doi.org/10.48550/arXiv.1810.11363

N. Kazeev, A. R. Al-Maeeni, I. Romanov, M. Faleev,
R. Lukin, A. Tormasov, A. H. Castro Neto,

K. S. Novoselov, P. Huang, and A. Ustyuzhanin, npj
Comput. Mater. 9, 113 (2023).
https://doi.org/10.1038/s41524-023-01062-z

Publisher’s Note. Allerton Press, Inc. remains
neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Al tools may have been used in the translation or
editing of this article.

MOSCOW UNIVERSITY PHYSICS BULLETIN  Vol.79 Suppl. 2 2024




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /RUS ()
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


