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Abstract—Over the past decades, brain–computer interfaces (BCIs) have been rapidly evolving. A BCI
is a system that records brain activity signals using electrophysiological methods and then processes these
signals to generate control commands. The most challenging aspect of BCIs is the nonstationary nature of
brain signals, which makes it difficult to achieve stable and accurate decoding. Therefore, developing robust
methods for processing and classifying EEG signals to extract control commands is a critical research area.
A related challenge is the low signal-to-noise ratio in EEG data, especially when target patterns are weak
or the data is labeled inaccurately. This paper presents the results of an evaluation of an approach combining
feature extraction and data augmentation techniques to address the aforementioned challenges applied to
the classification of premotor potentials. The approach is based on the application of linear discriminant
analysis (LDA) to sequentially extract informative components in the frequency and time domains For the
first time, the applicability of this algorithm to EEG containing premotor patterns of real movements is
demonstrated. Features of different nature (spectral power, Hjorth parameters, interchannel correlations)
were tested and compared with each other and a traditional approach based on common spatial patterns
and a linear classifier. It is shown that transformations in the frequency domain alone improve accuracy
from 63.9% in the traditional approach to 77.5% on a dataset of 16 experiments on different subjects. With
additional transformation in the time domain, accuracy increases to 98.8%. On average, across different
model configurations, a segment length of 500 ms is the most optimal. Two approaches were developed
and tested to achieve algorithm universality across subjects: universal transformations in frequency domain
trained on data from all subjects and without this step at all. It is shown that accuracies of up to 98.3% can
be achieved with such approaches. A discussion of optimal frequency bands, segment lengths, and features
is provided. Thus, data from different subjects can be effectively classified by a common model, which
is rare in global research and is usually accompanied by a number of assumptions, cumbersome models,
and inferior accuracy. Thus, in addition to the achieved accuracy enhancement, the proposed algorithm
exhibits robustness to transient noise and artifacts through signal segmentation into short epochs. It
also effectively addresses the critical task of extracting informative signal components in scenarios with
potentially imprecise expert annotations. Finally, it can be adapted to mitigate the need for subject-specific
calibration. These attributes render the proposed algorithm suitable for real-time applications, including
closed-loop BCIs for addressing the pressing challenge of neurorehabilitation.
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1. INTRODUCTION

In recent decades, advancements in neurophys-
iology and psychophysiology, coupled with rapid
progress in computational capabilities, have led to the
emergence and rapid development of brain–computer
interfaces (BCIs) [1–3]. BCIs are sophisticated
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software and hardware systems designed to facilitate
direct communication between the human brain and
electronic devices. They have found extensive appli-
cations in neurocontrol, particularly in the context of
restoring lost motor functions [4].

There exists a wide range of applications and
methods for forming control commands in such
systems, often without overt physical manifesta-
tions. For instance, BCIs based on inner speech
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[5, 6] and motor imagery [7–9] are most commonly
encountered. However, such cognitive activity is
far from being fully understood [10, 11], and the
experimental results associated with its study are
poorly reproducible [12]. This lack of reliable knowl-
edge regarding the electrophysiological correlates of
cognitive control underlies the primary challenge of
ideomotor and inner-speech-based BCIs. From a
technical standpoint, this leads to the problem of ex-
tracting informative features from brain bioelectrical
activity signals, particularly electroencephalography
(EEG). The latter is most frequently used due to its
accessibility, temporal resolution, and noninvasive
nature.

On the other hand, there is the issue of EEG non-
stationarity. Moreover, despite the existing knowl-
edge of EEG patterns and characteristics during var-
ious sensory, motor, and cognitive activities, their
specific forms are highly dependent on the subject and
their current psychophysiological and functional state
[13]. In the context of motor activity, the following
conditions are crucial: (a) which body part will be
involved in the movement, (b) whether it will be exe-
cuted physically or imagined, and (c) whether the ex-
ecution is voluntary or ballistic. The complex task of
extracting discriminative patterns of cognitive activity
is further complicated by the influence of the current
state in various modalities: fatigue level, emotional
state, monotony, etc. This is another major problem of
ideomotor BCIs related to the need for adaptive meth-
ods that are robust to the natural nonstationarity and
uncertainty of EEG [14, 15]. This problem can also be
attributed to the shortcomings of experimental pro-
tocols where stimulus-instructions create an evoked
potential that overlaps or even completely obscures
the target EEG patterns [16]. Nevertheless, there
are examples of systems based on classical and deep
learning models that achieve sufficiently high accu-
racy in recognizing neurocontrol commands for prac-
tical use [1, 3, 15, 17, 18]. However, they have their
drawbacks: limited set of control commands, com-
putational resource consumption, universality across
subjects, and requirements for a large amount of la-
beled data.

Regarding specific challenges in studying motor
and ideomotor activity, the first one is the uncertainty
of the temporal boundaries of a motor imagery pattern
or premotor potential. The increase in the amplitude
of the electromyography (EMG) signal can only ap-
proximate the right boundary of the premotor poten-
tial, as it is physiologically lagged. It is also known
that preparation for a real movement does not take
more than 500 ms [19, 20], which again provides only
a rough estimate of the left boundary of the premo-
tor potential. Consequently, event-related potentials

(ERP) methodology fails due to the poor synchro-
nization. Using longer segments in turn can increase
the proportion of uninformative signal in the sample.
The latter can make a key negative contribution to
the feature extraction process, as the target patterns
are weakly expressed in amplitude [21] and can be
lost in the background noise. Nevertheless, there are
adaptive approaches that, to a certain extent, address
this problem. For example, in the work [22], by pre-
filtering the EEG signal in the presumed frequency
band of the expected pattern, it is possible to correctly
determine the its temporal boundaries and improve
the classification accuracy. It has also been shown
that, with different signal-to-noise ratios and small
sample sizes, high ideomotor classification accuracy
can be obtained by refining informative segments [23].

In our previous work [24], we proposed a motor
imagery patterns classification algorithm. The al-
gorithm naturally incorporates adaptability through
differences between directly adjacent windows of tar-
get and background signals. It also leverages the
advantages of classical machine learning models to
find short informative epochs of the signal. It was
shown that the algorithm is capable of nearly perfectly
distinguishing between motor imagery of the left and
right hands even on a dataset of different subjects.
Segment length of 750 ms was found to be opti-
mal. However, it is impossible to verify that a motor
imagery was executed, as they are not accompanied
by external manifestations. To address this issue,
computational experiments were conducted to test
the algorithm that includes original feature extraction
and data augmentation. This time, an EEG dataset
with execution of real movements was used. The
fact of movement execution is easily verified by the
EMG signal, so the task is reduced to analyzing
segments preceding the increase in EMG amplitude.
To determine the lateralization of a real movement,
250–300 ms is sufficient [26]. In this work, in addition
to the optimal segment length of 750 ms for motor
imagery and shorter lengths of 500 and 250 ms were
investigated.

Developing algorithms for reliable recognition of
premotor patterns is one of the most demanded ap-
plications of BCIs, particularly for individuals who
have suffered a stroke or lost motor function for other
reasons [2, 7, 9, 27]. In this case, the key goal
is to induce neuroplasticity, which is best achieved
in closed-loop BCIs. In such BCIs, the successful
formation and recognition of the target command is
explicitly signaled to the subject, creating feedback
[28, 29]. The feedback also allows the system to adapt
to the subject’s current state, which helps classify
low-amplitude target patterns in nonstationary EEG.
For such purposes, the algorithm needs to be imple-
mented in real time. This, in turn, requires, high speed
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and algorithm’s adaptability to different subjects, i.e.,
the absence of excessive individual tuning. The algo-
rithm proposed in this work meets the former criteria,
and to solve the latter problem, two approaches to
achieve algorithm’s universality were developed and
tested. The approaches, respectively, imply either
models for transformations in the frequency domain
tuned on the dataset of all subjects or complete ab-
sence of such models.

Further in the article, in the section Materials
and Methods, brief information is provided about the
dataset and the main steps of the proposed algorithm.
Subsequently, the results of the computational exper-
iments are presented and analyzed in the section Re-
sults and Discussion, while the section Conclusions
provides a brief summary of the obtained results, their
significance, and the authors’ plans for the further
development and application of the algorithm.

2. MATERIALS AND METHODS

2.1. Dataset and Subjects

During the experimental session, subjects (n =
16, both male and female, age 21.5 ± 3.5 years) per-
formed real movements with their right and left hands
and feet. The moments of movement execution were
not cued with any sensory stimuli. Instead, the sub-
jects were continuously looking at the clock face on
the display and executed movements when the clock
hand was pointing at initially marked ticks. Move-
ment execution for 2 s alternated with a resting state
of 5–10 s, with EEG being recorded continuously.
hands movements implied fist clenching, while feet
movements meant flexing both feet vertically. Ap-
proximately 70 movement executions were recorded
for each subject. A more detailed description of the
experimental protocol can be found in our previous
work based on the same dataset [24].

2.2. EEG and EMG Recording

EEG was recorded relative to ear reference elec-
trodes using an Encephalan-131-03 electroencepha-
lograph (Medikom MTD, Taganrog, Rostov oblast)
from 17 standard leads (F7, F3, Fz, F4, F8, T3, C3,
Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2). EEG signal
preprocessing consisted of cleaning it from eye blink
artifacts using a cross-correlation method with the
electrooculogram (EOG) signal [25].

EMG was recorded in the area of the superfi-
cial muscles that flex the forearm at the elbow joint
(m. brachioradialis), the superficial flexors of the
fingers (m. flexor digitorum superficialis), and the
dorsiflexors of the feet (m. tibialis anterior). To
label the data, the EMG signal was filtered in the

0.1–4 Hz range, after which the onset of real move-
ment execution was stated when the amplitude ex-
ceeded 10 μV (approximate right boundary of the
premotor pattern).

2.3. Informative Features for Premotor Patterns
Classification Task

Nine biologically significant EEG frequency bands
were used: δ(1–3 Hz), θ(3–7 Hz), α(7–10 Hz),
μ(10–13 Hz), β1(13–25 Hz), β2− γ1(25–45 Hz),
γ2(55–70 Hz), γ3(70–90 Hz), and γ4(90–110 Hz).
Power spectral density (PSD) for these bands was
calculated using Welch’s method (Hanning window,
50% overlap of successive windows) [30]. After cal-
culating the PSD, it was log-transformed and con-
verted into a feature vector by summing the am-
plitudes of frequencies falling within the frequency
boundaries of each band.

Additionally, Hjorth parameters [31] were used as
features. This feature combination is traditionally
considered quite complete for describing any func-
tional state based on an EEG signal: activity, mo-
bility, and complexity. The first represents the simple
variance of the EEG signal, the second is interpreted
as the dominant frequency of amplitude changes in
the signal, and the third is the similarity of the signal
to a perfect sinusoid. Given a time series y(t), the
parameters are calculated as follows:

activity(y(t)) = variance(y(t)),

mobility(y(t)) =

√
activity(y′(t))
activity(y(t))

,

complexity(y(t)) =
mobility(y′(t))
mobility(y(t))

.

Finally, the third group of features was inter-
channel correlations, which were calculated as the
Pearson correlation coefficient between series of
signals from all unique pairs of channels (136 pairs
in the case of 17 channels).

2.4. Frequency Filtering

Frequency filtering was performed using the fourth
order Butterworth filter with infinite impulse re-
sponse.
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2.5. Transformations in Frequency
and Time Domains

A detailed description of these transformations can
be found in our previous work [24], therefore only a
concise description is provided here.

The extraction of informative parts from the fre-
quency domain involves the sequential consideration
of samples of each type of movement and the back-
ground signal. For each such a binary sample, a
complete set of PSD features is calculated. After-
wards, a 1-component linear discriminant analysis
(LDA) model is trained and saved. As a result, there
are as many 1-component LDA models as the num-
ber of considered types of movements. Each model
compresses information from the frequency domain
in the most optimal way to separate patterns of its
movement type from the background signal. When
using Hjorth parameters or correlations as features
for final classification, the frequency corresponding to
the weight with the largest absolute value is extracted
from each model. Then the EEG signal undergoes
multiband filtering in the obtained frequency ranges.
One of the approaches aimed at intersubject uni-
versality implies performing the described procedure
using the sample of all 16 subjects. It is supposed
to provide universal set of the models for frequency
domain transformations.

For additional extraction of the most informative
segments in the time domain, for each two-second
signal preceding real movement, a sample of two-
class examples created. One class was the considered
movement and the second one was the background
signal. The feature vector consisted of differences
between the feature vectors of all combinations of
short segments (250, 500, or 750 ms with a 100 ms
shift) within the 2-second original signals of rest and
movement. If PSD features were used, the obtained
frequency domain LDA models were simply applied
to the feature vector of each short segment. Oth-
erwise, the multiband filtering approach described in
the previous paragraph was applied to each short
segment. A 2-component LDA model was trained on
the obtained sample of two classes (differences in fea-
tures of the background-movement and background-
background segments pairs) based on one motor act.
In this case, the columns of the sample correspond
to the same short segments of the signal, i.e., they
encode the time dimension. Hence, the obtained
model optimally compresses information not only in
the frequency but also in the time domain to discern
the pattern of this movement and background. Af-
ter independently processing all 2-second premotor
EEG signals in this manner, they form a sample to
be further classified.

2.6. Classification

Classification and accuracy evaluation were per-
formed based on a logistic regression model with
L2 penalty, L-BFGS optimization, and a stopping
criterion of 0.0001. The regularization parameter C of
the logistic regression was optimized on a grid of val-
ues: 0.001, 0.01, 0.1, 1, 10. Two-fold cross-validation
was used to evaluate the classification accuracy.

Feature values were z-standardized, and the en-
tire dataset was randomly shuffled. The described
classification procedure was applied separately to the
datasets of each subject (unless explicitly stated oth-
erwise), and the final estimate was calculated as the
average of the estimates of all subjects.

As in our previous work [24], a combination of
common spatial patterns (CSP; the number of filters
from 1 to 9 was optimized through cross-validation)
and logistic regression as a final classifier applied
to samples from full 2-second premotor signals was
used as a baseline.

3. RESULTS AND DISCUSSION

The baseline approach demonstrated modest re-
sults in the premotor potentials classification: on av-
erage 53.7% when considering only hand movements
and 63.9% when considering also leg movements
(Table 1).

3.1. Evaluation of the Algorithm Performance
Using Premotor Potentials Data

in the Intra-Subject Manner

When applying frequency domain transformations
individually to the data of each subject and using all
2 s of the signal before each movement, PSD features
perform best. This result is due to the frequency do-
main transformations themselves being optimized for
PSD features: 67.5% when classifying 3 movements
and 77.5% for the two hand movements (Table 1).
Features based on Hjorth parameters and correla-
tions are significantly inferior at this stage (by more
than 10%). Interestingly, the LDA models for trans-
formations in the frequency domain are trained on
binary samples of each movement type versus back-
ground, but ultimately improve the classification of
premotor patterns among themselves. This suggests
the good effectiveness of this step in highlighting
effects that are truly specific to each type of movement
in the frequency spectrum.

Finally, in an individual approach to the data of
each subject, additional extraction of informative
short segments within 2-s signals of each premotor
act was considered. The obtained results demon-
strate a slight advantage of using 500 ms segments,
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Table 1. Accuracy (%) of 2 or 3 types premovement potentials classification averaged across subjects in different
approaches

Individual Universal No transformations

transformations transformations in frequency domain

in frequency domain in frequency domain

Approach Features 3 movements 2 movements 3 movements 2 movements 3 movements 2 movements

CSP+LR CSP-filters 53.7 63.9 53.7 63.9 53.7 63.9

Frequency PSD 67.5 77.5 50.3 68.8 58.2 74.1

domain Hjorth params 54.7 66.5 57.0 69.9 64.9 75.2

manipulations Correlations 52.5 63.8 54.6 65.2 58.3 65.9

Frequency + time PSD 56.8 72.5 38.7 45.5 40.0 48.1

domain (750 ms) Hjorth params 68.5 89.4 71.1 88.9 69.3 94.9

manipulations Correlations 72.1 98.8 69.4 89.9 69.9 98.3

Frequency + time PSD 61.6 72.5 37.7 48.5 40.1 48.2

domain (500 ms) Hjorth params 68.7 98.4 71.1 95.6 69.4 93.8

manipulations Correlations 71.6 98.8 68.6 92.6 67.9 95.5

Frequency + time PSD 64.2 78.7 38.7 48.6 40.9 51.8

domain (250 ms) Hjorth params 62.6 83.5 64.7 87.0 61.6 80.1

manipulations Correlations 64.7 89.6 68.5 96.0 64.3 88.3

while for motor imagery, the optimal length was
750 ms. At the same time, almost perfect separation
of hand movements was again obtained: 98.8% and
98.4% using features of interchannel EEG signal
correlations and Hjorth parameters, respectively, after
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Fig. 1. All 16 subjects’ data clustering after time do-
main transformations (interchannel correlations features,
500 ms segments).

multiband filtering (Table 1). At the same time, the
results obtained based on PSD features do not show
noticeable improvements compared to the previous
step. this effect is most likely due to the decrease
in the quality of Welch’s periodograms calculated on
such short segments.

Thus, it has been confirmed that the algorithm
previously proposed for motor imagery can be applied
to premotor patterns without loss of accuracy. The
clustering of data using correlation features and a
segment length of 500 ms is shown in Fig. 1. How-
ever, the individual approach used has a significant
drawback in the need to train models separately for
each subject. That is, in the BCI paradigm, such
an approach would require a long calibration in a
controlled experimental session for each new sub-
ject. In this work, we tested two approaches to solve
this problem: (a) the use of a universal set of LDA
models for transformations in the frequency domain
and (b) elimination of this step. Option (a) involves
training LDA models on samples of each movement
and background, composed of data from all subjects.
Option (b) consists in using only transformations in
the time domain. In the latter case, the feature space
of each short segment is calculated based on the
raw EEG signal without filtering when using Hjorth
parameters and correlations. In the case of PSD
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Fig. 2. All 16 subjects’ data clustering after time domain
transformations in the approach with universal models for
frequency domain transformations (Hjorth parameters,
500 ms segments).

features, it just means no feature space compression
for each short segment.

3.2. Evaluation of the Approach Based on Universal
Models for Frequency Domain Transformations

When using the universal approach with train-
ing a set of LDA models for transformations in the
frequency domain that is common to all subjects,
the accuracy obtained for PSD features decreased
as expected (Table 1). At the same time, the ac-
curacy when using Hjorth parameters paradoxically
increased by 2–4% (Table 1). The latter effect can be
explained by a more accurate definition of frequency
ranges for filtering when training on a large dataset of
all subjects simultaneously. However, obtained im-
provements in accuracy when using Hjorth parame-
ters and correlations do not reach the values obtained
in the individual approach using PSD features adn
transformations in the frequency domain.

Regarding the further extraction of informative
segments, in this approach, the optimal segment
length, according to the average assessment of dif-
ferent features, was also 500 ms. When using Hjorth
parameters, 71.1% and 95.6% (Fig. 2), respectively,
when considering all 3 movements or only hands; for
correlation features—68.6% and 92.6%, respectively
(Table 1). However, when using correlation features
and 250 ms segments, a slightly higher accuracy of
96% was obtained, while for Hjorth parameters with
this segment length, it dropped to 87% (Table 1).

Nevertheless, the effectiveness of small segment
lengths becomes clear if we consider that in the re-
sulting universal frequency domain transformation
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Fig. 3. All 16 subjects data clustering after time domain
transformations in the universal approach without models
for frequency domain transformations (interchannel cor-
relations features, 750 ms segments).

models for hand movements. The optimal frequency
ranges were determined to be 7–10 and 25–49 Hz.
These ranges are quite high-frequency, so it is easier
to catch specific effects in them at shorter segment
lengths. The accuracy when using PSD features
drops to almost chance level, which is associated with
a combination of factors of short segments and the
absence of individual frequency tuning (Table 1).

Thus, it was shown that the approach based on
training the models for frequency domain transforma-
tions on all subjects’ data leads to negligible decrease
in classification accuracy (less than 3%). This makes
the approach applicable in practice, as it is very likely
to successfully work while being fed with a new sub-
ject data.

3.3. Evaluation of the Approach without Models
for Frequency Domain Transformations

In another universal approach without a set of
LDA models for frequency domain transformations,
the accuracy when using PSD features decreased by
less than 4% when considering hand movements. But
for all 3 movements, the decrease was almost 10%
(Table 1). This is likely explained by the fact that
in this case, without compression in the frequency
domain, the number of features is quite large for the
available number of examples. Therefore, even despite
the most complete representation of the frequency
domain, the classification model struggles to achieve
high accuracy on a relatively small sample of each
individual subject. At the same time, the accuracy
when using Hjorth parameters further increased al-
most to the values obtained in the individual approach
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using PSD features at the stage of frequency domain
transformations—64.9% (3 movements) and 75.2%
(hand movements) (Table 1). Apparently, this is due
to the fact that in the raw unfiltered EEG signal, all
complex frequency effects are most fully represented.
Those effects can be quite effectively captured by
the mobility (∼ dominant frequency) and complexity
(∼ similarity to an ideal sinusoid)—two of the three
Hjorth parameters.

When further extracting informative temporal
segments in this approach, the most optimal seg-
ment length, according to the average assessment of
different features, was 750 ms. When using Hjorth
parameters, 69.3% and 94.9%, respectively, when
considering all 2 movements or hands movements
only; for correlation features—69.9% and 98.3%
(Fig. 3), respectively (Table 1). This result can be
explained by the fact that, in the absence of specificity
in the frequency domain, it is more advantageous
to use a slightly longer and therefore more diverse
segment of the signal. However, a further increase
in accuracy by increasing the segment length to
1000 ms is unlikely, since the maximum previ-
ously obtained accuracy has already been practically
achieved.

Similarly to the previous universal approach, the
accuracy when using PSD features drops to almost
chance level (Table 1).

4. CONCLUSIONS

In this paper, we demonstrated the applicability of
an algorithm we previously developed for the classifi-
cation of motor imagery EEG patterns to premotor
EEG patterns. In an individual approach with se-
quential feature extraction in the frequency domain
and data augmentation within each individual seg-
ment of the signal prior to a movement, similar accu-
racies of up to 98.8% were achieved when considering
only movements of the left and right hands.

Further refinement of the algorithm to achieve its
robustness to intersubject variability was also tested.
Recall that the algorithm, in terms of time domain
transformations, achieves robustness to variability in
functional states by calculating the differences be-
tween neighboring segments of the background and
target signals. Two options for achieving univer-
sality were proposed: with a universal set of fre-
quency domain transformers and without frequency
domain transformations at all. It is shown that both
of them work, with loss of accuracy being quite neg-
ligible compared to the subject-specific approach.
The approach without frequency domain transforma-
tions using correlations almost completely repeats
(98.3%) the best result in the subject-specific ap-
proach (98.8%) when considering hand movements.

Indeed, correlations take into account important spa-
tial effects, and the relatively short length of the seg-
ments limits the set of frequencies affecting the re-
sults.

An analysis of the results of both universal ap-
proaches was conducted to understand how the
information from the frequency domain was utilized.
For instance, the optimality of short segment lengths
in universally trained frequency domain transforma-
tion models can be explained by the relatively high-
frequency ranges determined as optimal in these
models. Hjorth parameters, among other things,
indirectly characterize frequency effects, so it is not
surprising that they allowed achieving high accura-
cies even without frequency domain transformations
using the raw EEG signal.

As a further validation of the obtained results, it
is planned to examine in detail the patterns in differ-
ent subjects in the frequency ranges from universally
trained frequency domain transformation models. In
approaches to achieving universality across subjects,
before practical applications, it is necessary to con-
duct computational experiments in a “leave-one-out”
paradigm. The latter implies that training is per-
formed on data from all subjects except one, and then
the trained model is tested on the data of the excluded
subject. After these checks, it should become clearer
which of the universal approaches is more suitable
for practice, since in this work very minor differences
were obtained between them. At the same time, in the
context of feature extraction, it would probably make
sense to combine Hjorth parameters and correlations,
since they alternately show the best results in different
approaches. The obtained results will be converted
into the final version of the algorithm, ready for real-
time operation, in particular, within a closed-loop
BCI for neurorehabilitation tasks.
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