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Abstract—Hydrodynamic modeling via numerical simulators of underground gas storages (UGSs) is an
integral part of planning and decision-making in various aspects of UGS operation. Although numerical
simulators can provide accurate predictions of numerous parameters in UGS reservoirs, in many cases this
process can be computationally expensive. In particular, calculation time is one of the major constraints
affecting decisions related to optimal well control and distribution of gas injection or withdrawal over the
reservoir area. Novel deep learning methods that can provide a faster alternative to traditional numerical
reservoir simulators with acceptable loss of accuracy are investigated in this paper. Hydrodynamic
processes of gas flow in UGS reservoirs are described by partial differential equations (PDEs). Since PDEs
involve approximating solutions in infinite-dimensional function spaces, this distinguishes such problems
from traditional ones. Currently, one of the most promising machine learning approaches in scientific
computing (scientific machine learning) is the training of neural operators that represent mappings between
function spaces. In this paper, a deep learning method for hydrodynamic modeling of UGS is proposed. A
modified Fourier neural operator for hydrodynamic modeling of UGS is developed, in which the model
parameters in the spectral domain are represented as factorized low-rank tensors. We trained the model on
data obtained from a numerical model of UGS with nonuniform discretization grid, more than 100 wells
and complex geometry. Our method demonstrates superior performance compared to the original Fourier
neural operator (FNO), with an order of magnitude (50 times) fewer parameters. Tensor decomposition not
only greatly reduced the number of parameters, but also increased the generalization ability of the model.
Developed neural operator simulates a given scenario in a fraction of a second, which is at least 106 times
faster than a traditional numerical solver.
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Fourier neural operators, hydrodynamic modeling, underground gas storage
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1. INTRODUCTION
Underground gas storage (UGS) is a technolog-

ical complex designed for the injection, storage, and
withdrawal of gas, which includes surface engineer-
ing and technical facilities; a section of the subsoil
limited by a mining allotment; a gas storage facility;
control layers; a buffer gas volume; and a fund of wells
for various purposes.

Modeling of gas flow in UGS reservoirs plays an
crucial role in improving the accuracy and reliability of
forecasting. Consequently, hydrodynamic modeling
of UGS is an integral part of planning and decision-
making in various aspects of UGS operation, such
as optimal well utilization, pressure control and gas
inventory management.

*E-mail: D.Sirota@adm.gazprom.ru

In the field of modeling underground gas storage
processes, two approaches are common: simplified
balance models and more accurate numerical hy-
drodynamic models (HDMs). Balance models are
often used due to insufficient data for building three-
dimensional numerical models or due to a lack of
computing power. Balance models obtain a solution
to the gas flow equation in a porous medium using
simplified dependences and do not take into account
complex geological and hydrodynamic peculiar prop-
erties that can have a significant impact on the be-
havior of UGS.

In turn, modern numerical simulators for hydro-
dynamic modeling of gas flow in reservoirs allow ob-
taining significantly more accurate information about
the distribution of parameters in UGS reservoirs and
calculating the influence of various factors on gas
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storage processes. Numerical simulators typically
use a finite volume method to approximate a system of
differential equations in space and an implicit scheme
to approximate in time, which can be a computation-
ally expensive procedure.

Currently, numerical HDMs are mainly used to
solve problems of hydrodynamic modeling of UGS.
Due to the fact that such models can be adapted
to the accumulated history of field development (in
the case of creating UGS in depleted fields) and
the actual history of UGS operation, the modeling
and adaptation horizon of models can be more than
60 years. Moreover, given the significant amount of
geological and production data supplied to hydrody-
namic models as initial data (results of geophysical
surveys, measurements of pressure, gas flow rates,
etc.), the time of one calculation can reach several
hours.

Thus, the calculation time is one of the main fac-
tors influencing the processes related to optimal well
control the distribution of gas injection or withdrawal
across wells and over the reservoir area. One of the
promising approaches to solving the issue of acceler-
ating hydrodynamic calculations is the use of modern
deep learning methods.

A significant part of research in deep learning
methods is focused on the study of mappings be-
tween finite-dimensional vector spaces [1, 2]. In turn,
the physical processes of gas flow in UGS reser-
voirs are described by partial differential equations
(PDEs), which require the study of mappings be-
tween functional spaces of infinite dimension, which
distinguishes this problem from traditional ones [3].

According to the universal approximation theorem
[4, 5], a fully connected network with a sufficient
number of parameters can potentially approximate
any continuous function defined on a compact set
with any accuracy. In [6–8] the theoretical possibil-
ities of approximating nonlinear mappings between
functional spaces are shown. Moreover, in [9], esti-
mates of the complexity bounds of the approximation
error of neural networks are given, linking the number
of model parameters and the dimension of the problem
with the value of the approximation error.

In addition to the theoretical possibility of ap-
proximating mappings between infinite-dimensional
spaces, efficient algorithms for such problems are
needed for successful practical application. It is
known that different neural network architectures
show different performance in solving specific prob-
lems. For example, fully connected neural networks
demonstrate significantly lower quality in computer
vision problems compared to widely used convo-
lutional architectures [2]. To study the issue of
efficient training of neural network algorithms, [10]
proposes to decompose the total model error into

three components: approximation error, optimization
error, and generalization error. The approximation
error depends on the number of network parame-
ters and the problem dimension, the optimization
error is associated with the loss function, and the gen-
eralization error depends on the size of the training
sample [11].

A crucial point in constructing mappings that
generalize the dependences described by PDEs using
neural networks is the curse of dimensionality [12,
13]. Especially for objects with complex geome-
try, such as UGS and for equations with multi-
dimensional parameter spaces, such as the three-
dimensional unsteady gas flow equation [3]. It is
known that neural network algorithms may require
a large training dataset to generalize the main de-
pendences and relationships. According to [11], the
upper bound on the generalization error is: Egen ∼
1√
N

, where N is the number of training samples. In

this case, to obtain a relative generalization error of
1%, a dataset of size ∼ O

(
104

)
is required.

In the case of modeling hydrodynamic processes
in reservoir systems, obtaining a large training data
set can be a difficult task, since the data set is formed
from calculations on a numerical simulator, which
is a computationally expensive process. Therefore,
taking into account the previously mentioned points,
the development of neural network algorithms for ef-
fectively solving problems of this type is a nontrivial
and relevant issue.

In recent years, deep learning methods have be-
come widely used in scientific computing tasks, be-
coming a new paradigm [14, 15]. In particular, many
algorithms have been developed that offer faster alter-
natives to numerical modeling.

Surely, there are many studies based on traditional
deep learning approaches in the form of constructing
finite-dimensional operators, using the results of nu-
merical simulations as a training data. For example,
in [16–18], convolutional, recurrent, and generative-
adversarial architectures for solving hydrodynamic
problems were investigated. But since the presented
methods do not use knowledge about the structure of
the modeled dependences, they are sensitive to the
geometry of the object, the discretization grid, and
require a large amount of data.

The group of methods [19–21] belongs to a
specific class of algorithms, the so-called physics-
informed neural networks (PINNs). This approach
is also based on finite-dimensional mappings, but
takes into account the PDE as a part of loss function,
using the mechanism of automatic differentiation
[22]. Thus, physics is taken into account during
learning process, since the model tries to minimize
the residuals between the left and right parts of
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the equation, the initial and boundary conditions.
The disadvantage of this approach is the ability to
approximate only a specific instance of the PDE.
Consequently, PINNs do not provide significant
acceleration relative to traditional numerical methods
for many applied problems.

A more promising approach is to train neural
operators that represent mappings between function
spaces [23–25]. Neural operators can approxi-
mate any nonlinear continuous operators, are grid-
independent, and require only one-shot training, so
they can be trained and evaluated on different dis-
cretization grids and PDE instances. These methods
have been shown to have better performance in PDE
approximation problems than other existing deep
learning-based approaches, including for hydrody-
namic modeling problems.

The construction and training of neural operators
for approximating mappings in infinite-dimensional
spaces is an active area of research, and work is
currently ongoing to improve the efficiency and ap-
plicability of this approach to various problems.

2. PROBLEM SETTING

2.1. Mathematical Model of Gas Flow
in Porous Media

This paper investigates the process of hydrody-
namic modeling of UGS with porous reservoirs. For
such objects, various parameters included in the
equation of gas flow in a porous media (filtration) have
a significant dependence on time [3]. Such processes
are called unsteady (nonstationary).

The general equation (Eq. (1)) of a three-dimen-
sional unsteady single-phase flow of a compressible
fluid (natural gas) in a porous media is obtained by
substituting the law of conservation of momentum
(Darcy’s filtration law) into the law of conservation of
mass [26]:

∂
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μgBg

∂p

∂x

)
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∂

∂y

(
Ayky
μgBg
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)
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∂
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(
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∂p
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)
Δz =
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∂
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( p

Z

)
− qgsc,

(1)

where p is the pressure, qgsc is the gas flow rate at
standard conditions, Bg = pscTZ

Tscp
is the gas formation

volume factor, Z is the compressibility correction
factor (z-factor) of a real gas, μg is the gas viscosity,
Tsc is the temperature at standard conditions, psc is
the pressure at standard conditions, φ is the porosity,
k is the permeability, A is the cross-sectional area of
fluid flow, Vb is the reservoir bulk volume, Δx, Δy, Δz

are the length, width and height of the rock volume
(control volume), respectively.

The partial differential equation (Eq. (1)) is non-
linear due to the dependence of μg, Bg, and Z on
pressure and is similar to the diffusion equation, how-
ever, in terms of its dynamic characteristics, the flow
described by this relationship is not diffusion but fil-
tration.

2.2. Operator Learning

The purpose of this work is to approximate the
gas flow equation in reservoirs of UGS (Eq. (1)) by
constructing a neural operator that maps between
two infinite-dimensional spaces from a finite set of
pairs of initial, boundary conditions and solutions of
PDE. In the case of implementing such an approach,
it is possible to obtain a significant acceleration of the
calculation speed with an acceptable loss of accuracy
relative to numerical simulations.

Let the problem dimension d ∈ N and denote by
D ⊂ Rd the domain in Rd. Then we can consider a
mapping that is essentially a solution operator for a
PDE (Eq. (2)):

G : A
(
D;Rda

)
→ U

(
D;Rdu

)

a �→ u := G(a), (2)

where a ∈ A
(
D;Rda

)
is an input function of the form

a : D �→ Rda , u ∈ U
(
D;Rdu

)
is an output function of

the form u : D �→ Rdu . A
(
D;Rda

)
and U

(
D;Rdu

)

are Banach spaces.
For operator learning, there is a finite collection

of pairs of initial, boundary conditions and solutions
of the PDE {aj , uj}Nj=1, where aj ∼ μ is an i.i.d.
sequence from probability measure μ defined on A
and uj = G (aj). In our case these pairs can be
obtained using historical data or by simulations on
a numerical hydrodynamic model of the UGS. This
numerical model uses the finite volume method to ap-
proximate the system of partial differential equations
in space and an implicit scheme for approximation in
time. Thus, the training of the neural operator can be
formulated as follows.

The initial data generated from the numerical sim-
ulator are essentially the result of a nonlinear mapping
satisfying the gas flow equation: G (aj) = uj . As a
result, it is possible to construct a neural operator Nθ∗

by selecting the parameters θ ∈ Θ in such a way as
to approximate the original mapping Nθ∗ ≈ G. Then
the learning process is reduced to the problem of
minimizing the loss function C : U × U → R and has
the form (Eq. (3)):

min
θ

Ea∼μ [C (Nθ (a) ,G (a))] . (3)
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3. NEURAL OPERATORS

In accordance with the goals of this work, it is
planned to train a neural operator that approximates
the PDE solution of gas flow in a UGS. To develop
such methods, it is convenient to adhere to the fol-
lowing sequence of steps in constructing the model
architecture [25]:

1. P—Operator which lifts input data to higher
dimensional latent space;

2. Iterative application of the kernel integration
operator (L);

3. Q—Operator of projection from latent space
into original output space.

Thus, the structure of the neural operator has the
form (Eq. (4)):

N (a) = Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ P (a) , (4)

where the layers depth is L ∈ N, P : A
(
D;Rda

)
→

U
(
D;Rdv

)
, dv ≥ da, Q : U

(
D;Rdv

)
→ U

(
D;Rdu

)
.

By analogy with classical finite-dimensional neu-
ral networks L1, . . . ,LL are nonlinear layers of the
operator, Ll : U

(
D;Rdv

)
→ U

(
D;Rdv

)
, v �→ Ll (v),

which can be written as (Eq. (5)):

Ll (v) (x) = σ
(
Wlv (x) + (K (a; θl) v) (x)

)
,

∀x ∈ D (5)

where Wl is a linear transformation, K : A×Θ →
L(U(D;Rdv ),U(D;Rdv )).

The operator K (a; θl) [24] is an integral operator
of the form (Eq. (6)):

(K(a; θl)v)(x) =

∫

D

κθ(x, y; a(x), a(y))v(y)dy,

∀x ∈ D. (6)

The kernel κθ is a neural network with parameters
θ ∈ Θ and can have different structures. Due to this,
there are various types of neural operators. For ex-
ample, graph neural operators (GNO, MGNO) [24],
low-rank neural operators (LNO), Fourier neural op-
erators (FNO).

Currently, one of the promising methods for
approximating solutions of the gas flow equation
is FNO (Fig. 1), which parameterizes the kernel
of the integral operator in the Fourier space [27].
This method is one of the most studied and shows
better efficiency in problems of fluid filtration in a
porous media compared to traditional neural network
algorithms and other operator architectures (GNO,
MGNO, LNO, DeepONet) [25]. Moreover, in [28]

it is shown that to achieve a given error, the com-
plexity of FNO grows logarithmically, for the case of
approximating the diffusion equation. In contrast to
the alternative architecture DeepONet [23], for which
the complexity grows quadratically.

The Fourier neural operator [27] belongs to a class
of neural operators in which the kernel can be written
as a convolution (Eq. (7)):

(K(a; θl)v)(x) =

∫

D

κθ(x− y)v(y)dy,

∀x ∈ D. (7)

To efficiently parameterize the kernel, according to
the convolution theorem, this method considers the
image of v in Fourier space using the fast Fourier
transform (FFT) algorithm F and the inverse FFT
F−1 (Eq. (8)):

(K(θ)v)(x) = F−1

(
Rθ(k) · F(v)(k)

)
(x),

∀x ∈ D, (8)

where Rθ (k) = F (κθ) (k) is the tensor of Fourier
transform coefficients of κθ .

Thus, the layers of the Fourier neural operator will
have the form:

Ll (v) (x)

= σ
(
Wlv (x) + F−1 (Rl (k) · F (v) (k)) (x)

)
. (9)

The key difference between (Eq. (9)) and tradi-
tional neural network architectures is that all oper-
ations are defined directly in the function space and
hence do not depend on the data discretization.

To develop an efficient algorithm for a neural op-
erator that approximates a nonlinear equation of gas
flow in porous media, it is crucial to take into account
the multidimensional spatiotemporal structure of the
underlying PDE solution operator. This takes the
problem beyond the scope of matrix linear algebra
into the field of tensor methods. These methods are
widely used in many applications. As shown in [29],
parameterization of multidimensional convolutional
operators using tensor decompositions allows for a
significant increase in the efficiency of convolutional
neural networks in problems with significant spa-
tiotemporal structure.

Tensor decompositions (canonical polyadic, Tuc-
ker, tensor-train) have also shown high performance
in the field of neural operator learning. The authors
[30] have deeply investigated this approach on the
Navier–Stokes and Burgers equations, showing its
effectiveness.
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Fig. 1. (a) FNO model architecture: a(x) is the model input,P is a fully connected lifting layer into a higher-dimensional latent
space, Q is a fully connected projection layer into the physical space, u(x) is the model output; (b) Fourier layer: F ,F−1 are
the Fourier transform and the inverse Fourier transform, R is a linear transform in the Fourier space, W is a linear transform.

Consider the Tucker [31] decomposition (for its
flexibility) in a three-dimensional formulation
(Eq. (10)):

W = G×1 U
(1) · · · ×d U

(d) ×d+1 U
(I)

×d+2 U
(O) × d+3U

(L), (10)

where W is the tensor of model parameters, G is
the core tensor, U(1), · · · ,U(d),U(I),U(O),U(L)—
factor matrices.

Fig. 2. Illustration of a Tucker decomposition for a three-
dimensional model parameters tensor.

� �

Tensor operator block Tensor operator block

Parameter decompostion

Fig. 3. Factorized Fourier layer with parameters rep-
resented in the spectral domain via a low-rank tensor
decomposition.

A visualization of the Tucker decomposition of a
third-order tensor can be seen in Fig. 2.

In this paper, we present a method for hydrody-
namic modeling of UGS using a modified Fourier
neural operator, where the model parameters in the
spectral domain are represented as factorized low-
rank tensors (Fig. 3).

Tensor decompositions significantly reduce the
number of model parameters, enabling the imple-
mentation of more complex operators that enhance
modeling accuracy.

4. NUMERICAL EXPERIMENTS

4.1. Data Configuration

The dataset in this paper is formed using data from
a hydrodynamic model of an UGS. The approxima-
tion period is chosen to be equal to the gas withdrawal
season. However, to increase amount of training
data, the dataset also includes injection seasons data.
The entire dataset is formed from historical data and
simulations of various withdrawal and injection sce-
narios with a time step of 10 days (decades). The
UGS has more than 100 operating wells and complex
geometry.

The dataset consists of 620 input-output pairs.
There are 540 samples for the training dataset and
40 each for the validation and test datasets.

Note that the training set consists of the with-
drawal and injection seasons data, while the valida-
tion and testing sets consist only of the withdrawal
seasons data.

MOSCOW UNIVERSITY PHYSICS BULLETIN Vol. 79 Suppl. 2 2024



NEURAL OPERATORS FOR HYDRODYNAMIC MODELING S927

Va
lid

at
io

n 
lo

ss

Tr
ai

ni
ng

 lo
ss

Number of epochs

Fig. 4. Training and validation losses evolution vs epochs.

4.2. Loss Functions and Training

We use relative H1 Sobolev norm as loss function
[32] to train the model (Eq. (11)) because it has a
good normalization and regularization effect since the
reservoir pressure in the UGS has different scales at
different spatial and temporal points. Moreover, by
matching derivatives, such loss function allows the
neural operator to better capture the smoothness of
a physical process:

L (y, ŷ) =

(
k∑

i=0

∣∣∣∣Di y −Di ŷ
∣∣∣∣p
p

||Di y||pp

) 1
p

,

k = 1, p = 2 (11)

where ŷ is the pointwise predicted reservoir pressure,
y is the pointwise ground truth reservoir pressure,
Di is a differential operator of order i, p is the order
of norm. Computing derivatives is implemented via
finite-difference method.

Fig. 5. Histograms of the residuals on test dataset (bar).

Relative L2 error function is used for validation and
testing (Eq. (12)):

L2 (y, ŷ) =
||y − ŷ||2
||y||2

. (12)

The model predicts the evolution of the reservoir
pressure field over the entire period of time.

During training, the initial learning rate is spec-
ified to be 0.001 and gradually decreases with the
number of epochs passed. Training stops when the
loss on the validation set no longer decreases.

R2 = 0.9995

Ground truth

Fig. 6. Scatter plot of scaled reservoir pressure.
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o

Fig. 7. Visualization of reservoir pressure from numerical model, TFNO model and absolute error on the test sample (time
step 4/16).

o

Fig. 8. Visualization of reservoir pressure from numerical model, TFNO model and absolute error on the test sample (time
step 10/16).

4.3. Results

In numerical experiments we designed and trained
3 types of neural operator architectures:

1. FNO with the number of Fourier modes limited
to 5 and the number of parameters 9.9M.

2. FNO with the number of Fourier modes limited
to 16 and the number of parameters 18.9M.

3. TFNO (this paper)—the same as in 2, but with
a factorized parameter tensor, having only 2%
of the parameters (0.39M).

The models are trained using the H1 loss function
and tested using the relative L2 error function. Train-
ing and validation performance are shown at Fig. 4.

Among trained models, developed in this paper
modified Fourier neural operator, in which the model
parameters in the spectral domain are represented
in the form of factorized low-rank tensors (TFNO)
shown superior performance with an order of magni-
tude lower parameters.

Interestingly, tensor decomposition of the model
parameters not only greatly reduced the number of
parameters, but also increased the generalization
ability of the model. FNO with 18.9 million parame-
ters and TFNO have very similar training errors, but
TFNO shows a significantly lower validation error.

The statistical characteristics and histograms of
the residuals (y− ŷ) on the test dataset vs the number
of model parameters can be seen in Table 1 and Fig. 5,
respectively.

Based on Table 1 and Fig. 5, a comparison of
the statistical characteristics of the models residuals
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o

Fig. 9. Visualization of reservoir pressure from numerical model, TFNO model and absolute error on the test sample (time
step 16/16).

shows that the neural operator with tensor decom-
position of parameters has the best performance on
the test data and at the same time has 50 times fewer
parameters.

The trained model is capable of quite accurately
reproducing the dynamics of reservoir pressure during
the withdrawal seasons. Figure 6 shows a scatter plot
of normalized (scaled to range from 0 to 1) reservoir
pressure between modified Fourier neural operator
(TFNO) and the results of numerical simulations on
test data.

The scatter plot shows that the distribution gen-
erated by the neural operator on the test data in each
point of the reservoir is very close to the distribution
from the hydrodynamic model. The coefficient of
determination R2 = 0.9995. Scatter plot visualiza-
tions for FNO (18.9M parameters) and FNO (9.9M
parameters) can be seen in the Appendix A.

Comparison of the reservoir pressure field dynam-
ics predicted by neural operator and the numerical
simulations (on test data) is presented in Figs. 7–9.
The time step denotes the ordinal number of the ten-
day period (decade) within the gas extraction season.
A fragment of an underground gas storage reservoir is
shown (in the i, j plane). The absolute prediction error

Table 1. Statistical characteristics of residuals on test
dataset vs number of trained model parameters

Method μ (bar) σ (bar) No. of params

FNO –0.03 0.5 9 965 441

FNO –0.05 0.36 18 898 337

TFNO 0.02 0.35 386 529

of the model also has acceptable values. The trained
model’s output looks smooth and reproduces global
and local peculiarities of reservoir pressure distribu-
tion.

Note, developed neural operator simulates a given
scenario in a fraction of a second, which is at least
106 times faster than a traditional numerical solver.

Visualizations of the reservoir pressure field dy-
namics predicted by FNO (18.9M parameters) and
FNO (9.9M parameters) can be seen in the Appen-
dices B, C.

5. CONCLUSIONS

In this paper, a deep learning method for hy-
drodynamic modeling of underground gas storages
(UGS) is proposed. A modified Fourier neural opera-
tor for hydrodynamic modeling of UGS is developed,
in which the model parameters in the spectral domain
are represented as factorized low-rank tensors. We
trained the model on data obtained from a numerical
model of UGS with nonuniform discretization grid,
more than 100 wells and complex geometry.

Through comparisons with original Fourier neural
operator model it is shown that our method demon-
strates superior performance with an order of mag-
nitude (50 times) fewer parameters. Tensor decom-
position not only greatly reduced the number of pa-
rameters, but also increased the generalization ability
of the model. Our numerical experiments show, that
developed neural operator simulates a given scenario
in a fraction of a second, which is at least 106 times
faster than a traditional numerical solver, enabling its
application in planning and decision-making tasks
related to various aspects of UGS operation, such
as optimal well utilization, pressure control, and gas
inventory management.
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R2 = 0.9989V

t

Fig. 10. Scatter plot of scaled reservoir pressure for FNO with 9.9M parameters.

R2 = 0.9994

t

M

Fig. 11. Scatter plot of scaled reservoir pressure for FNO with 18.9M parameters.

APPENDIX A

COMPARISON OF SCATTERPLOTS
BETWEEN NEURAL OPERATORS
AND NUMERICAL SIMULATIONS

Scatter plots for trained FNO models with 9.9M
parameters and 18.9M parameters can be seen in
Figs. 10 and 11, respectively.

APPENDIX B

RESERVOIR PRESSURE COMPARISON
(FNO WITH 9.9M PARAMETERS)

Comparison of the reservoir pressure field dynam-
ics predicted by neural operator (FNO with 9.9M
parameters) and the numerical simulations (on test
data) is presented in Figs. 12–14.
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o

Fig. 12. Reservoir pressure from numerical model, FNO model (9.9M parameters), and absolute error (time step 4/16).

o

Fig. 13. Reservoir pressure from numerical model, FNO model (9.9M parameters), and absolute error (time step 10/16).

o

Fig. 14. Reservoir pressure from numerical model, FNO model (9.9M parameters), and absolute error (time step 16/16).

APPENDIX C

RESERVOIR PRESSURE COMPARISON
(FNO WITH 18.9M PARAMETERS)

Comparison of the reservoir pressure field dynam-
ics predicted by neural operator (FNO with 18.9M

parameters) and the numerical simulations (on test
data) is presented in Figs. 15–17.
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o

Fig. 15. Reservoir pressure from numerical model, FNO model (18.9M parameters) and absolute error (time step 4/16).

o

Fig. 16. Reservoir pressure from numerical model, FNO model (18.9M params) and absolute error (time step 10/16).

o

Fig. 17. Reservoir pressure from numerical model, FNO model (18.9M params) and absolute error (time step 16/16).
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