Use of conditional generative adversarial networks to improve representativity of data in optical spectroscopy

A.Efitorov, S.Burikov, K.Laptinskiy, T.Dolenko, S.Dolenko

DLCP-2021, Moscow

Raman spectroscopy inverse problem

• Main goal: detect dangerous components mixed in ethanol solutions;

- Components of interest:
 - o methanol
 - ethyl acetate
 - fusel oil
- Non-invasive observation method based on Raman spectroscopy;
- Inverse problem (multitask classification) solution by machine learning model

Raman spectra

Raman spectra of ethanol (49%) solutions with different component concentrations: 1 - pure ethanol, 2 - fusel oil (5.6%), 3 - methanol (8%), 4 - ethyl acetate (6%)

Components concentrations

- Full dataset: 40710 spectra
- Spectra dimension = 2048 channels
- <u>Problem:</u> wide concentration "gaps" in dataset

Principal component analysis of component concentrations

Add empty concentrations

- create 2D grid based on PC1\PC2 coordinate space (PC-space);
- fill empty grid cells in PC-space;
- inverse transformation to the original concentrations;
- implement empirical constraints (eliminate negative values, values exceeds max concentrations)
- Component concentrations (%) at generated dataset: 1 - fusel oil, 2 - methanol, 3 - ethyl acetate

Conditional GAN

Generator

Two inputs of model:

- z random noise
- y label annotation

Discriminator

Loss function minimization in case : {X (spectra) - real, Y (annotation) - true}.

- real spectra [X] - false;

Loss function maximization in cases: \downarrow

- generated spectra [X*], true;

- generated spectra [X*], false

Non-saturating heuristic

 Non-saturating heuristic - loss function without problem of small gradients;

 Heuristic because there are no theoretical prove*;

$$\frac{d}{dx}\log(1-x) = \frac{-1}{1-x}$$
$$x = 0 \rightarrow slope = -1$$
$$x = 1 \rightarrow slope = -\infty$$

*[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks

Neural network architectures

Generator network:

- Embedding layer for component vector (size: 256);
- 4 1D-Convolutional layers with LeakyRelu activation;
- Upsampling operation (2x) after each layer;

Discriminator network:

- 3 fully connected layers with Relu activation;
- 1 output neuron (real\generated image);

Inverse problem solver network:

- 2 fully connected layers network;
- categorical cross-entropy loss;

Examples of generated spectra

Generated Raman spectra for low frequency band (left) & valence band (right)

Results

			Original spectra	Original spectra
		Original spectra	+ additive noise 10%	+ multiplicative noise 10%
Low frequency band	original dataset	77.0%	70.2%	55.9%
	cGAN + original data	74.4%	69.3%	54.7%
Valence band	original dataset	67.1%	62.4%	60.1%
	cGAN + original data	67.4%	63.0%	57.5%
Full spectra	original dataset	72.8%	69.7%	59.1%
	cGAN + original data	75.4%	70.7%	60.4%

The accuracy of the multiclass classification problem solution by neural networks model based on original and generated spectra

Conclusions

• The Raman spectroscopy inverse problem was solved by neural network model;

• Conditional generative adversarial networks were implemented to improve representativity of data;

• The proposed approach demonstrates results improvement for full spectra data and noisy data

Thank you for your attention!

The study was supported by the Russian Foundation for Basic Research, project no. 19-01-00738