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CMIP6 climate models

Climate models are one of the primary means for scientists to understand how the climate has changed in the past and
may change in the future. These models simulate the physics, chemistry and biology of the atmosphere, land and oceans,

and require some of the largest supercomputers in the world to generate their climate projections.

There is no an established climate model that is THE ONE and only.

There are 49 scientific groups that run over 100 distinct climate models in CMIP6

Some of them are more accurate in reproducing sea surface temperature, others accurately reproduce snow cover, etc.

“All models are wrong, but some are useful”

George Box

CMIP — coupled model intercomparison project
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Climate model of 
Institute of 
Numerical 

Mathematics
(INMCM)

Global 
numerical 
weather 

prediction SL-
AV model

The INM RAS-MSU land surface scheme

Heat and moisture exchange in a cell of 
INM RAS-MSU land surface model

INM RAS-MSU land surface scheme

q Heat, moisture, water vapor and ice dynamics in soil (23 layers)
q Snow cover with liquid water treatment (4 layers)
q Transpiration and photosynthesis by vegetation
q Wetland CH4 model
q LAKE model
q River routing scheme
q Standalone version resolution is 0.5 x 0.5 deg.
q GLCC global land cover data
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Land surface scheme
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Thermal conductance equation

Richards equation: water vapor dynamics equation
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Land surface scheme
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Thermal conductance (diffusion) equation

Richards equation — for liquid water dynamics
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Land surface scheme
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Thermal conductance equation Richards equation

Important uncertainties of the land surface characteristics evolution 
are due to crude approximations of &', &) and +)

(Cote and Conrad, 2005)&' = ,-./ + ,. ,012 − ,-./ , ,. =
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(van Genuchten, 1980)
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PDE identification
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Thermal conductance equation Richards equation

Major uncertainties of the land surface characteristics evolution are 
due to crude approximations of &', &) and +)

PDE identification: the task is to approximate the coefficients &', &) and +).

Our approach: to approximate the coefficients &', &) and +) as parametric
learnable functions of PDE solution.
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PDE identification
!"
!# =

!
!% &'

!"
!% &' = ((", +) + are the parameters

" is the PDE solution

-+ = argmin
4

5("6789, ((", +)) 5−?as an example

8/23



PDE identification
!"
!# =

!
!% &'

!"
!% &' = ((", +) + are the parameters

" is the PDE solution

-+ = argmin
4

5("6789, ((", +))

5(:, ;) = <=> ?: @ :, ; , :ABCD

"
-&'

PDE solver 5(:, ;)((", +)
:ABCD

E"( -&', # + G)

as an example

8/23



PDE identification
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5(A, C) = JKL @A B A, C , ADEFG

Gradient optimization starts here

as an example

Chain rule:
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PDE identification: scenario 1
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PDE identification: scenario 1
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PDE solver

what exactly is “PDE solver” here?
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PDE identification: scenario 1
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PDE identification: scenario 1
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Quality measures
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PDE identification: scenario 1
we model the evolution !"#$% of soil column using known formulae for &',"#$%

&' ! = * exp(/!) &' ! = * exp /! ∗ 2 + cos 78!2
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! = 2
$%& = 5∘)

! = 6
$%& = 5∘)

PDE identification: scenario 1
we model the evolution $%+,- of soil column using known formulae for ./,%+,-

1 = 1
2 1 − tanh ! $ − $%& ,

./ $ = 89:;</ ∗ 1 + 8?:;@/ ∗ (1 − 1)

13/23



Neural network optimization
!" # = %&&(#, )) — Fully-connected neural network 6 layers

Mish activation*

* Diganta Misra. “Mish: A Self Regularized Non-Monotonic Activation Function”. arXiv:1908.08681 [cs, stat] (Aug. 13, 2020). http: //arxiv.org/abs/1908.08681
** Kingma D. P., Ba J. Adam: A Method for Stochastic Optimization // arXiv:1412.6980 [cs]. 2017. http: //arxiv.org/abs/1412.6980
*** Loshchilov I., Hutter F. SGDR: Stochastic Gradient Descent with Warm Restarts // arXiv:1608.03983 [cs, math]. 2016. http: //arxiv.org/abs/1608.03983

Approaches used:
Adam** optimizer;
SGDR*** learning rate schedule;
Normal additive noise for improving generalization ability (zero-centered, uncorrelated)

Exponential decay of noise magnitude

Implementation:
(a) Jax + Haiku + Optax (FP32 only)
(b) Tensorflow (FP32 and mixed precision tested)
NVIDIA DGX Station at SAIL IORAS
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Results: scenario 1

!"#$ %&
%' = 4.6×10/0

"12$ 3 = 8×10/5
FP32

Jax: 72 it/sec
TF:  30 it/sec

Mixed precision

!"#$ %&
%' = 7×10/0

"12$ 3 = 1.6×10/7
FP32

Jax: 71 it/sec
TF:  30 it/sec

!"#$ %&
%' = 4.5×10/9

"12$ 3 = 1.0×10/9
Mixed precision

TF:  74 it/sec
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Results: scenario 1

!"#$ %&
%' = 3.6×10/0

"12$ 3 = 1.5×10/0
FP32

Jax: 70 it/sec
TF:  29 it/sec

!"#$ %&
%' = 2×10/6

"12$ 3 = 1.2×10/7
Mixed precision

TF:  75 it/sec

!"#$ %&
%' = 2×10/0

"12$ 3 = 1.75×10/0
FP32

Jax: 71 it/sec
TF:  29 it/sec

!"#$ %&
%' = 1.9×10/6

"12$ 3 = 1.1×10/7
Mixed precision

TF:  74 it/sec
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PDE identification: scenario 2
! – liquid water ";
#$ = &''(", *);
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,- =

,
,. #$
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we model the evolution "/012 of soil
column using known formulae for
#$,/012. Assuming Dirichlet b.c.s.

Additional assumptions:
1. " ≥ 0;" ≤ 1;
2. #$ 0 = 0
3. #$(") ≥ 0 for any W
4. 89:8$ ≥ 0 for any "

+<= >
?9: @A

&''= (", *)

+<B >
8?9:
8$ @A

,&9(", *9)
,"

=

regularization terms:
ℒ∗∗ = ℒ∗ + <E&''= " = 0, * +
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PDE identification: scenario 2
we model the evolution!"#$% of soil column using known formulae for &',"#$%
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Results: scenario 2

!"#$ %&
%' = 7.7×10./

"01$ 2 = 2.3×10.5
FP32

Jax: 72 it/sec
TF:  30 it/sec

!"#$ %&
%' = 1.5×10./

"01$ 2 = 3.2×10.5
Mixed precision

TF:  76 it/sec
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PDE identification: scenario 3
Richards	equation
0 – liquid water 1;
23 = 56(1, 96);
;3 = 5<(1, 9<);

we model the evolution 1=>?@ of soil
column using known formulae for 23,=>?@
and ;3,=>?@. Assuming Dirichlet b.c.s.

Additional assumptions:
1. 1 ≥ 0;1 ≤ 1;
2. 23 0 = 0
3. F6G

F3
≥ 0 for any 1

4. ;3 ≥ 0
5. ;3 0 = 0
6. F<G

F3
≥ 0 for any 1 +IJ K

FL6G
F3 M N

O56(1, 96)
O1

P

+ IQ K
FR<G
F3 M N

O5<(1, 9<)
O1

P

O1
OS
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O
OT

23
O1
OT

+
O;3
OT

regularization terms:
ℒ∗∗ = ℒ∗ + IW56

P 1 = 0, 96 + IP5<P 1 = 0, 9< +

+IX K
L6G M N

56
P(1, 96) + IY K

R<G M N

5<P(1, 9<)
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PDE identification: scenario 3
we model the evolution!"#$% of soil column using known formulae for &',"#$% and )',"#$%
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Results: scenario 3

!"#$ %&
%' = 3.0×10./

"01$ 2 = 4.4×10.4
FP32

TF:  1.3 it/sec *

"01$ 5 = 0.94

* due to computationally expensive Hessian estimation: one needs to compute ∇8 9:;;(=,8)
9= with backpropagation
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Conclusions
- We propose a novel data-driven approach for identifying PDE systems using artificial neural

networks;

- We state the problem of a PDE identification as an inverse problem since we need to infer some
variables (PDE coefficients) based on the evolution of the system;

- Our approach is capable of approximating various complicated forms of PDE coefficients;

- Some flaws were detected related most likely to the well-known tendency of statistical models
(neural networks included) to lose accuracy in heavy tails of training data distribution;

- Coefficients approximation quality does not seem to correlate strongly with the accuracy of PDE
solution (yet to be assessed);

- Sensitivity to noise properties (considered simulating measurements errors) yet to be assessed.
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Outlook
- Regularize the networks and modify training procedure to better fit the coefficients of 

varying orders of magnitude;

- Assess accurately the link between the coefficients approximation quality and PDE solution 
quality;

- Assess the sensitivity of the method to noise properties: spatial correlation, temporal 
correlation, systematic bias, etc.;

- Assess the sensitivity of our method to spatial resolution of the measurements;

- Apply our method to real data taken at MSU meteorological station and other locations 
with different types of soil.

23/23



Thank you


