
Application of deep learning
technique to an analysis of hard
scattering processes at colliders

A. Zaborenko1, L. Dudko1, P. Volkov1, G. Vorotnikov1

1SINP MSU, Moscow

Outline

1. Physics
2. Used methods

2.1. DNN hyperparameter tuning
2.2. AutoML methods
2.3. Trying out boosting on errors
2.4. L1, L2 Regularization

3. Conclusion

Physics

In the current analysis we use the
measurement of t-channel single
top-quark production cross section as a
benchmark to test and improve our
analytical tools and assumptions.
Afterwards these methods are applied
to measure deviations from the
Standard Model (FCNC).

Feynman diagrams of t-channel single top-quark production

Physics
Neural networks are used twice during the analysis:

1. For QCD background suppression (5 features). We need to limit this background
process as much as possible as it is poorly modelled with MC methods.

2. For selecting t-channel single top-quark production events from other Standard Model
events recorded at the CMS detector (around 50 features).

Task specifics:

● The task at hand involves binary classification between signal and background
events.

● The number of events is sufficient for adequate model training.
● The speed of classification is not a priority, so accuracy should not be sacrificed.

DNN hyperparameter tuning: overview

● The idea: Finding the best combination of hyperparameters for a given or
similar task.

● The requirements: code modifications of varying complexity depending on a
hyperparameter optimization framework, a lot of computational resources.

● What to tune: the amount of hidden layers, the number of nodes in the
hidden layers, the activation function, the dropout rate.

● The results: an optimized neural network with varying degree of
improvements.

DNN hyperparameter tuning: choosing the framework

● We have chosen Keras Tuner as we’re working with tensorflow.keras
DNNs.

Another popular hyperparameter optimization framework is Optuna: it can
tune any ML model and quickly visualize the results.

● All models are ranked by a “score” variable: a metric that defines the
performance of a given model. It can be simply model’s loss, an Sklearn or a
user-defined metric.

● In order to start hyperparameter tuning user has to define a hyperparameter
space: all possible parameter combinations.

DNN hyperparameter tuning: adapting the code

def createModel(dim, hidden_layers, hidden_layers_dim, dense_activation, dropout_rate, learning_rate):

 model = Sequential()

 model.add(Input(shape=(dim,)))

 for n in range (hidden_layers):

 model.add(Dense(hidden_layers_dim, activation = dense_activation))

 model.add(Dropout(rate = dropout_rate))

 model.add(Dense(units=1, activation = 'sigmoid'))

 adam = Adam(lr=learning_rate)

 model.compile(loss='binary_crossentropy', optimizer=adam, metrics=['mean_squared_error'])

 return model

Keras model that is needed to be tuned:

DNN hyperparameter tuning: adapting the code

def build_model(hp):

 model = Sequential()

 model.add(Input(shape=(dim,)))

 for n in range (hp.Int('hidden_layers', min_value = 1, max_value = 7, step = 1)):

 model.add(Dense(units = hp.Int(

 'hidden_layers_dim', min_value = 50, max_value = 1000, step = 50), activation = hp.Choice(

 'dense_activation',values=['relu', ‘tanh’])))

 model.add(Dropout(rate = hp.Float('dropout_rate', min_value = 0.1, max_value = 0.5, step = 0.1)))

 model.add(Dense(units=1, activation='sigmoid'))

 model.compile(optimizer=tensorflow.keras.optimizers.Adam(hp.Choice('learning_rate', values=[1e-2, 1e-3])), loss =
'binary_crossentropy')

 return model

The same model adapted for the tuner, hyperparameter space is defined

DNN hyperparameter tuning: choosing the optimizer and
starting the search

tuner = RandomSearch(

 build_model,

 max_trials = 10000,

 objective='val_loss',

 executions_per_trial=3,

 overwrite=False,

 directory='../tuner',

 project_name='low_level'

)

tuner.search(features_train, labels_train,
batch_size=len(labels_train),epochs=3000,
shuffle=False,
validation_data=(features_test, labels_test,
weights_test), sample_weight=weights_train,
callbacks = [stop_early, reduce_lr], verbose=2)

Configure optimization strategy.

Run tuner.search with the arguments of model.fit.

Importantly, EarlyStopping callback was used to
prevent excessive overfitting and unnecessary
calculations

DNN hyperparameter tuning: optimization strategy

● Simple GridSearch: tries all combinations in the parameter space. Takes the
longest time but fully covers all combinations.

● RandomSearch: same as GridSearch, but tries combinations in a random
order. It is somewhat more time-efficient, but we can do better.

● BayesianOptimization: at first tries several combinations at random, then
intelligently moves in a parameter space to a local minimum.

● Hyperband: judge model performance after training a model for a small
amount of epochs. We deemed this optimization method ineffective in the
scope of the current task.

DNN hyperparameter tuning: visualizing the results

In general, we recommend visualizing tuning results using Facebook’s hiplot:

DNN hyperparameter tuning: visualizing the results

In general, we recommend visualizing tuning results using Facebook’s hiplot:

DNN hyperparameter tuning: visualizing the results

If entire hyperparameter space was scanned we can plot the relations between a
value of a certain hyperparameter and it’s mean score.
Plots for the SM neural network trained on low-level features:

DNN hyperparameter tuning: visualizing the results

Same results visualized for two
parameters at once:

DNN hyperparameter tuning: visualizing the results

We also plot the
discriminators of the best
networks and evaluate their
loss and ROC curves.

The outputs of the best
performing networks are
very close in terms of
shape and performance.

DNN hyperparameter tuning: example analysis performed
on a QCD network

DNN hyperparameter tuning: example analysis performed
on a QCD network

DNN hyperparameter tuning: example analysis performed
on a QCD network

DNN hyperparameter tuning: example analysis performed
on a QCD network

DNN hyperparameter tuning: example analysis performed
on a QCD network

We have used three activation functions
in hidden layers and found out that
ReLu performs more consistently and
overall more accurately.

DNN hyperparameter tuning: example analysis performed
on a QCD network

DNN hyperparameter tuning: example analysis performed
on a QCD network

AutoML methods: overview

● AutoML is the end-to-end process of applying machine learning in an
automatic way.

● The full autoML pipeline usually consists of:
○ data pre-processing,
○ feature engineering,
○ feature extraction,
○ feature selection,
○ model training,
○ algorithm selection,
○ hyperparameter optimization

● Needs a lot of computational resources and relatively little knowledge of
machine learning to deploy, so mainly is used in industries and often is
provided as a paid service.

AutoML methods: overview

Most of AutoML methods involve either working with images or classifying tabular
data. High energy physics events share resemblance with tabular data, so I will
be focusing on frameworks that are designed to handle this specific data type.
There are a lot of open source methods for classifying tabular data (Google’s
TabNet, for example), but many of them do not support event weights, which are
crucial for high energy physics.

The ones we tried that do:

● AutoKeras
● mljar-supervised

AutoML methods: mljar-supervised

Usage is super simple:

automl = AutoML(mode='Optuna', ml_task='binary_classification',
results_path=path, total_time_limit=2*24*3600, explain_level=2)

automl.fit(X=features_train, y=labels_train, sample_weight=weights_train)

To get the predictions user should run automl.predict(X) just like a normal ML
model.

A very competent model is trained in a moderate amount of time.

There are 3 modes of performance, all ranging in terms of performance and
required computational time.

AutoML methods: mljar-supervised
Comparison between base AutoML model obtained in dozens of minutes (top) and a
fine-tuned DNN (bottom):

AutoML:

DNN:

AutoML methods: mljar-supervised
Comparison between tuned AutoML model obtained in dozens of minutes (top) and a
fine-tuned DNN (bottom):

AutoML:

DNN:

AutoML methods: mljar-supervised

Pros:

● Works with minimal code
● Several modes to choose from
● Results are comparable to a tuned DNN

Cons:

● With the same test accuracy overfits more
● For our task train and test performance of a classifier needs to be very close

Boosting on errors

The hypothesis: increase the weights of mis-labeled events so the next model
will put more emphasis on those event and maybe classify them better.

The results: with each weight increase the model performed worse.

The weights are updated after each training.

L1, L2 regularization study

The problem: certain features work
extremely well for first-order
classification, so the network assigns
them really high weights from the start,
leaving out other features that might be
useful.

The hypothesis: use l-regularization to
limit the weights so certain features will
not overshadow others as much.

L1, L2 regularization study

● Under the hood L1 and L2 regularizations work in a similar way:

L1: loss = l1 * reduce_sum(abs(x))

L2:loss = l2 * reduce_sum(square(x))

Where reduce_sum computes the sum of elements across dimensions of a tensor and l1, l2
are regularization factors.

● We will conduct the study as follows: while leaving the rest hyperparameters
of the model the same, we will try to tune the regularization factors.

Tensorflow supports using regularization of biases and activation functions as
well, but we will limit this study to weight regularization.

L1, L2 regularization study

Finding the “sweet spot”: the regularization constant should be not too small and
not too high to have the desired effect. The example of L1 regularization:

Too small Good Too large

L1, L2 regularization study

Finding the “sweet spot”: the regularization constant should be not too small and
not too high to have the desired effect. The example of L2 regularization:

Too small Good Too large

Conclusion

● DNN tuning: effective yet resource-intensive method, computation time can
be somewhat reduced with different optimization techniques or smaller
hyperparameter space

● AutoML based on mljar-supervised: good baseline method, easy to
implement, but overfitting may not be desirable

● Boosting on errors: at its current state not advisable to use with DNNs
● L1, L2 regularization: is widely used to prevent overfitting, can work well if

the regularization constant is chosen correctly

Thanks for your attention!

Backup: code snippet for boosting on errors
boost_threshold = 0.4

boost_coefficient = 1.3

predict_train = model.predict(features_train)

weights_train_boosted = weights_train

for i in range(len(labels_train)):

 if ((labels_train[i] == 1) and (predict_train[i] < 1-boost_threshold)) or ((labels_train[i] == 0) and
(predict_train[i] > 0+boost_threshold)):

 weights_train_boosted[i] = weights_train_boosted[i]*boost_coefficient

