

Физический факультет Московского государственного университета имени М.В.Ломоносова

Применение переноса обучения сверточной нейронной сети для повышения точности решения обратной задачи фотолюминесцентной наносенсорики

<u>Чугреева Г. Н.</u>

Лаптинский К. А.

Доленко Т. А.

3 июля 2025 Москва

Al Mg Cu Fe Zn Ni Co Cr Pb

Углеродные точки (УТ) как наносенсоры

Свойства:

- Интенсивная, стабильная фотолюминесценция (ФЛ)
- Чувствительность ФЛ к изменениям параметров окружения (температура, pH, ионы и молекулы, и др.)
- Биосовместимость
- Диспергируемость в воде

Структурные особенности:

- Шарообразная/дискообразная форма
- Разнообразные функциональные группы на поверхности
- Размер до 100 нм

Области применения:

- Наносенсорика
- Тераностика
- Биовизуализация
- Энергетика

Схематическое представление УТ [1]

Фотолюминесцентные свойства УТ

в присутствии различных катионов с концентрацией 6 мМ.

Интенсивность ФЛ УТ в присутствии ионов Cr³⁺ с различной концентрацией Интенсивность ФЛ УТ в зависимости от концентрации ионов.

Концентрация УТ 5 мг/л

Наносенсор ионов на основе УТ

База данных для 6-параметрического наносенсора

Концентрация УТ: 5 мг/л

 Диапазон изменения концентрации
Cu²⁺, Co²⁺, Al³⁺, Cr³⁺, Ni²⁺: 0 – 6 мМ, шаг 1.5 мМ
NO₃⁻: 0 – 72 мМ, шаг 3-4.5 мМ

> 3125 растворов:
20 однокомпонентных
160 двукомпонентных
640 трехкомпонентных
1280 четырехкомпонентных
1024 пятикомпонентных
1 раствор без ионов

База данных для 7-параметрического наносенсора

- Концентрация УТ: 5 мг/л
- ≻ Диапазон изменения концентрации
 Cu²⁺, Co²⁺, Pb²⁺, Al³⁺, Cr³⁺, Ni²⁺: 0 – 6 мМ, шаг 1.5 мМ
 NO₃⁻: 0 – 81 мМ, шаг 3-4.5 мМ

7813 растворов:
12 однокомпонентных
120 двукомпонентных
640 трехкомпонентных
1920 четырехкомпонентных
3072 пятикомпонентных
2048 шестикомпонентных
1 раствор без ионов

O.E. Sarmanova et al. (2023). Spectrochim. Acta A Mol. Biomol. Spectrosc, 286:122003.
G.N. Chugreeva et al. (2024). Mosc. Univ. Phys, 79,2.

Цель и задачи работы

Цель: применение метода переноса обучения сверточной нейронной сети для повышения точности решения обратной задачи фотолюминесцентной наносенсорики.

Задачи:

- Дообучить модель, обученную для определения 6параметрической задачи на датасете с 7 ионами с целью улучшить качество решения обратной задачи
- 2. Проварьировать количество дообучаемых слоев, чтобы выделить наиболее оптимальный алгоритм обучения
- 3. Проверить, как меняется точность решения обратной задачи при переходе на автономное определение параметров

Параметры обучения

Тензор [1x27x201]

 Разбиение на тренировочный набор (70%) валидационный (20%) тестовый (10%) Данные в наборах не пересекались

- MSE loss-function
 - > Adam optimizer
- > Скорость обучения 0.001

 Критерий остановки обучения – неуменьшение ошибки на валидационном наборе в течение 100 эпох 7

Результаты дообучения модели, определяющей одновременно 7 параметров среды (неавтономное определение параметров)

ион Ы	MAE, мM (base, 6 param)	MAE, мМ (base, 7 param)	MAE, мМ (fine-tune last layer)	MAE, мM (fine-tune 2 last layers)	MAE, мM (fine-tune 3 last layers)	MAE, мМ (fine-tune all layers)
Cu ²⁺	1.01	0.88	1.25	0.91	0.85	<u>0.80</u>
Ni ²⁺	1.29	1.25	1.59	1.37	1.20	<u>1.19</u>
Pb ²⁺	-	1.38	1.57	1.47	1.38	<u>1.37</u>
Co ²⁺	0.48	0.43	0.63	0.49	<mark>0.39</mark>	0.43
Al ³⁺	<mark>0.86</mark>	1.15	1.41	1.26	1.09	1.14
Cr ³⁺	0.44	0.35	0.45	0.32	<u>0.29</u>	0.32
NO ⁻ 3	<mark>2.28</mark>	2.29	3.27	2.59	2.35	2.41

Результаты дообучения модели, определяющей одновременно 7 параметров среды (неавтономное определение параметров)

ион Ы	MAE, мM (base, 6 param)	MAE, мM (base, 7 param)	MAE, мM (fine-tune last layer)	MAE, мМ (fine-tune 2 last layers)	MAE, мM (fine-tune 3 last layers)	MAE, мM (fine-tune all layers)
Cu ²⁺	1.01	0.88	1.25	0.91	0.85	<mark>0.80</mark>
Ni ²⁺	1.29	1.25	1.59	1.37	1.20	1.19
Pb ²⁺	_	1.38	1.57	1.47	1.38	1.37
Co ²⁺	0.48	0.43	0.63	0.49	<u>0.39</u>	0.43
A ³⁺	<mark>0.86</mark>	1.15	7.47	1.26	1.09	1.14
Cr ³⁺	0.44	0.35	0.45	0.32	<u>0.29</u>	0.32
NO ⁻ 3	<mark>2.28</mark>	2.29	3.27	2.59	2.35	2.41

Относительные МАЕ:

NO ⁻ ₃ 3.2% 2.8% 4.0% 3.2% 2.9%	3.0%
--	------

Результаты дообучения модели, определяющей 1 параметр среды (автономное определение параметров)

ИОНЫ	МАЕ, мМ	МАЕ, мМ	МАЕ, мМ	МАЕ, мМ
ИОНЫ	(fine-tune last layer)	(fine-tune 2 last layers)	(fine-tune 3 last layers)	(fine-tune all layers)
Cu ²⁺	1.25	0.80	<mark>0.74</mark>	0.77
Ni ²⁺	1.58	1.19	<mark>1.14</mark>	1.24
Pb ²⁺	1.55	1.38	1.37	<mark>1.36</mark>
Al ³⁺	1.42	1.11	<mark>1.07</mark>	1.14
Co ²⁺	0.64	0.35	<mark>0.31</mark>	0.33
Cr ³⁺	0.43	0.23	0.22	0.23
NO⁻₃	3.27	2.49	<mark>2.40</mark>	2.48

Сравнение неавтономного и автономного дообучения

Cu²⁺

Ni²⁺

Pb²⁺

Co²⁺

ions

AI3+

	MAE,	мМ	2.5 -		Неавтономно Автономное о	е опредопредел	еление ение																											
Ионы	Неавтономное определение	Автономное определение	2.0 -																															
Cu ²⁺	0.8	0.74	F																															
Ni ²⁺	1.19	1.14	E 1.5 -			_1																												
Pb ²⁺	1.37	1.36	IAE,		1																													
Al ³⁺	0.86	1.07	≥ 1.0 -	1																														
Co ²⁺	0.39	0.31																																
Cr ³⁺	0.29	0.22	0.5 -					ł	•	1	.	- 1	.	.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	.	• •• •	1	1	• •• •	1	1	1	• •• •									
NO ⁻ 3	2.28	2.4	0.0 -																															

 NO_3^-

Cr3+

Выводы

- В ходе дообучения модели, умеющей определять тип и концентрацию 6 ионов, на определение типа и концентрации 7 ионов удалось достигнуть лучшей точности определения концентрации большинства ионов.
- 2. При дообучении удалось повысить точность определения концентрации не только известных катионов, но и нового, неизвестного ИНС ранее иона Pb²⁺.
- 3. При автономном дообучении точность определения почти всех катионов повышается.
- 4. Метод переноса обучения показал свою эффективность для определения типа и концентрации большинства ионов можно не обучать модель с нуля, а брать уже предобученную.

12

Спасибо за внимание!

Характеризация УТ

Длина волны испускания, нм

Изображение УТ, полученное с помощью ПЭМ (а); спектры ИК-поглощения выпаренных из водного раствора УТ (б).

Матрицы возбуждения-испускания фотолюминесценции водного раствора УТ с концентрацией 5 мг/л

Публикации по теме

- 1. O. E. Sarmanova, K. A. Laptinskiy, S. A. Burikov, G. N. Chugreeva, and T. A. Dolenko. Implementing neural network approach to create carbon-based optical nanosensor of heavy metal ions in liquid media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 286:122003, 2023.
- 2. G. N. Chugreeva, O. E. Sarmanova, K. A. Laptinskiy, S. A. Burikov, T. A. Dolenko. Application of convolutional neural networks for creation of photoluminescent carbon nanosensor for heavy metals detection. Optical Memory and Neural Networks (Information Optics). Принята к печати 25.07.2023.
- 3. O.E. Sarmanova, G. N. Chugreeva, K. A. Laptinskiy, S. A. Burikov, T. A. Dolenko. Decoding fluorescence excitation-emission matrices of carbon dots aqueous solutions with convolutional neural networks to create multimodal nanosensor of metal. Moscow University Physics Bulletin. Принята к печати 5.10.2023.

11