The 9th International Conference in Deep Learning in Computational Physics, July, 2-4, 2025, Moscow, Russia

USING MACHINE LEARNING METHODS FOR JOINT PROCESSING OF DATA FROM MULTIPLE SEMICONDUCTOR GAS SENSORS*

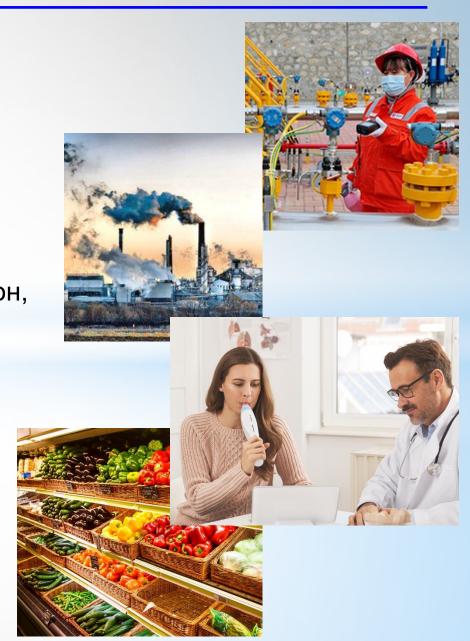
Isaev I.V.^{1,2,3}, Chernov K.N.⁴, Dolenko S.A.¹, Krivetskiy V.V.^{2,5}

¹ D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University,

² Scientific-Manufacturing Complex Technological Centre,

³ MIREA – Russian Technological University,

⁴ Physics Department, M.V. Lomonosov Moscow State University


⁵ Chemistry Department, M.V. Lomonosov Moscow State University

* The study was carried out at the expense of the grant No. 22-19-00703-P from the Russian Science Foundation.

https://rscf.ru/en/project/22-19-00703/.

Области применения

- Промышленность
 - Безопасность технологических процессов
 - Средства индивидуальной защиты персонала
- □ Экологический мониторинг
 - Оценка качества воздуха городов, промышленных зон, транспорта, жилых и рабочих помещений
- □ Медицина
 - Неинвазивная медицинская диагностика и контроль течения болезней
 - Контроль эффективности спортивных тренировок
- □ Экспресс анализ качества, оригинальности, свежести продуктов питания и напитков на основе их запаха.

Существующие технические решения

Принципы работы газоаналитических датчиков:

- □ Термокаталитический
 - Измерение количества тепла выделяемого при сгорании газа на катализаторе
- □ Термокондуктивный
 - Измерение разницы теплопроводности
- Электрохимический и гальванический
 - Измерение силы тока, возникающего при химических процессах в электролите
- Оптический
 - Инфракрасный (ИК-поглощение), интерферометрический, фотоионизационный (УФ)
- □ Полупроводниковый
 - Измерение изменения сопротивления полупроводника при абсорбции газов

Существующие технические решения

Преимущества полупроводниковых сенсоров:

- □ Возможность длительной непрерывной работы
 - Не имеют расходующихся частей в отличии от электрохимических сенсоров
- □ Более низкий предел обнаружения газов
 - По сравнению с оптическими и термокаталитическими сенсорами
- □ Широкий спектр детектируемых веществ
- Низкая стоимость
 - Возможность использования масштабируемых технологий изготовления
- □ Низкое энергопотребление
- Миниатюрность

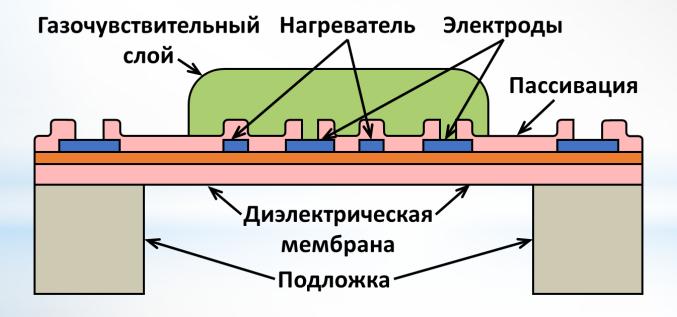
Направление работ

Общее направление работ: разработка мультидетекторного прибора, содержащего как один, так и массив сенсорных элементов, для одновременного выявления нескольких веществ в воздухе, а также определения качественного и количественного состава газовых смесей.

Возможные постановки задач ММО

Общее направление работ: разработка мультидетекторного прибора, содержащего как один, так и массив сенсорных элементов, для одновременного выявления нескольких веществ в воздухе, а также определения качественного и количественного состава газовых смесей.

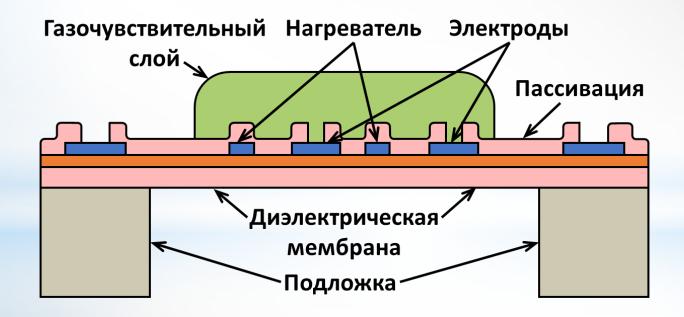
Возможные постановки задач, при использовании методов машинного обучения:


- Регрессия
 - Определение концентрации конкретного газа в воздухе,
- Бинарная классификация, многоклассовая классификация
 - Определение наличия/отсутствия конкретного газа в воздухе, содержащим примесь одного газа
- □ Многометочная классификация
 - Определение качественного состава газовой смеси из нескольких газов

На этапе набора данных

Планируется

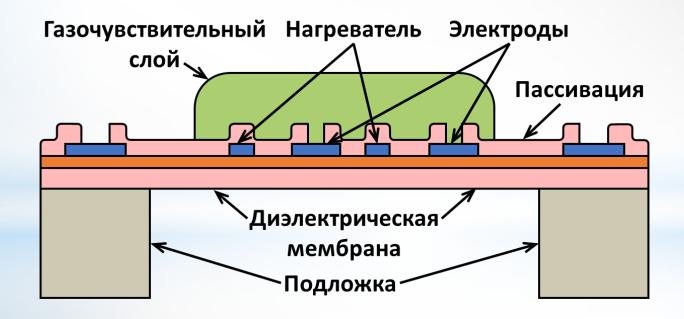
Полупроводниковый газовый сенсор


Схематическое устройство полупроводникового газового сенсора

Принцип работы полупроводникового газового сенсора основан на том, что молекулы газа, связывающиеся с материалом сенсора, влияют на его проводимость (электрическое сопротивление).

Полупроводниковый газовый сенсор

Схематическое устройство полупроводникового газового сенсора



Факторы, влияющие на степень связывания:

- □ Тип газа и его концентрация
- □ Материал датчика
- Температура

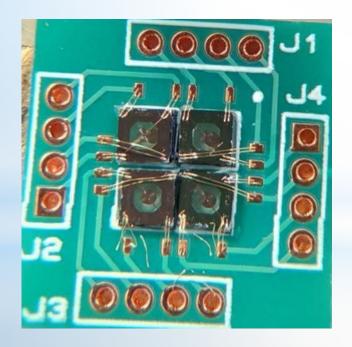
Полупроводниковый газовый сенсор

Схематическое устройство полупроводникового газового сенсора

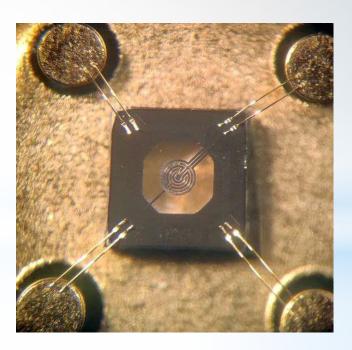
Факторы, влияющие на степень связывания:

- Тип газа и его концентрация
- □ Материал датчика
- □ Температура

Для достижения селективности

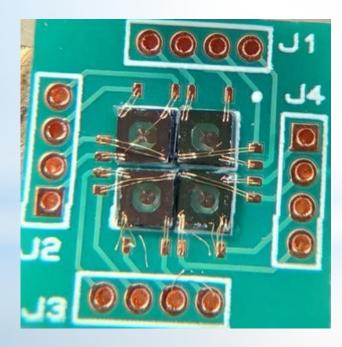

при определении конкретных газов

используется комплект сенсоров


с различными легирующими добавками

Полупроводниковый газовый сенсор

Комплект сенсорных элементов


Факторы, влияющие на степень связывания:

- □ Тип газа и его концентрация
- □ Материал датчика
- Температура

Для достижения селективности при определении конкретных газов используется комплект сенсоров с различными легирующими добавками

Полупроводниковый газовый сенсор

Комплект сенсорных элементов

SnO₂

- 1. SnO₂;
- 2. $SnO_2 Ru$; 10. $TiO_2 Cr Au$;
- 3. $SnO_2 Au$; 11. $TiO_2 Nb Au$;
- 4. $SnO_2 Pt$;
- 5. $SnO_2 Pd$;
- 6. $SnO_2 Cr Nb$;
- 7. $SnO_2 Si$;
- 8. $SnO_2 Si Au$;

TiO₂

9. $TiO_2 - Cr$;

12. $TiO_2 - Nb$

Факторы, влияющие на степень связывания:

- □ Тип газа и его концентрация
- □ Материал датчика
- □ Температура

Для достижения селективности

при определении конкретных газов

используется комплект сенсоров

с различными легирующими добавками

Полупроводниковый газовый сенсор

Динамики нагрева

Факторы, влияющие на степень связывания:

- Тип газа и его концентрация
- Материал датчика
- Температура

- Степень связывания молекул газа уменьшается с повышением температуры.
- Необходим нагрев для приведения датчика в исходное состояние.
- Для обеспечения

 временного разрешения
 необходимо использовать
 циклический нагрев и охлаждение.

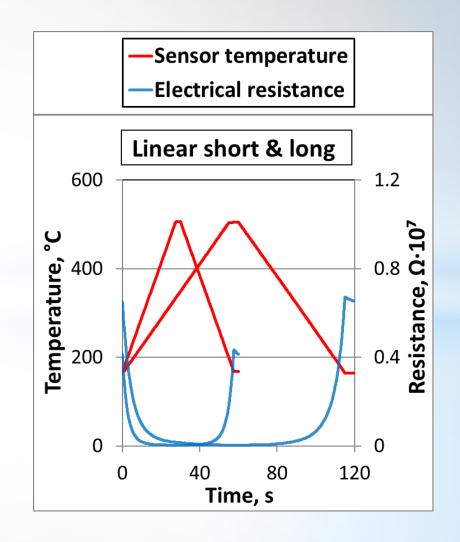
Полупроводниковый газовый сенсор

Динамики нагрева

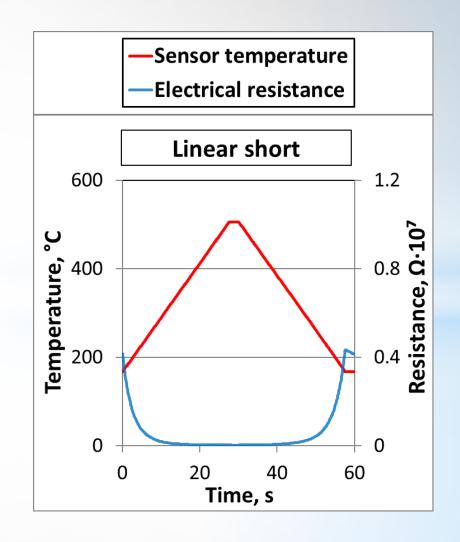
Факторы, влияющие на степень связывания:

- Тип газа и его концентрация
- □ Материал датчика
- Температура

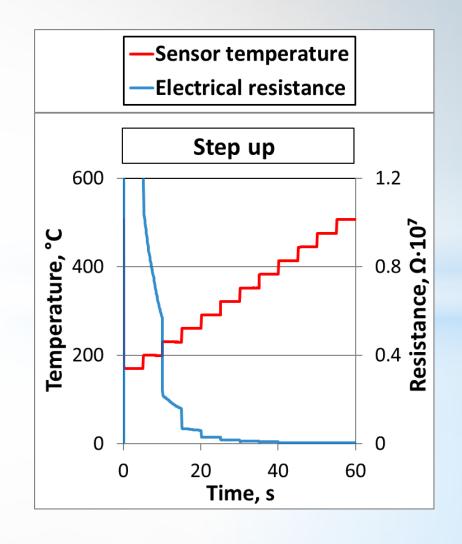
• Электрическое сопротивление полупроводниковых материалов также зависит от температуры.

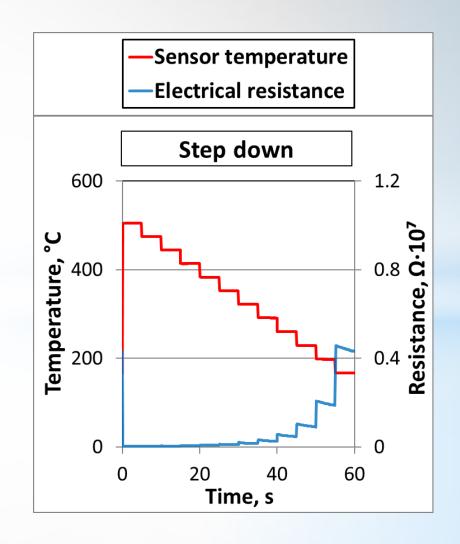


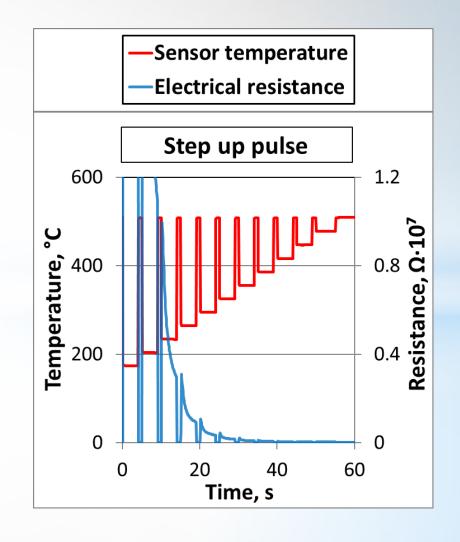
т. н. динамики нагрева.

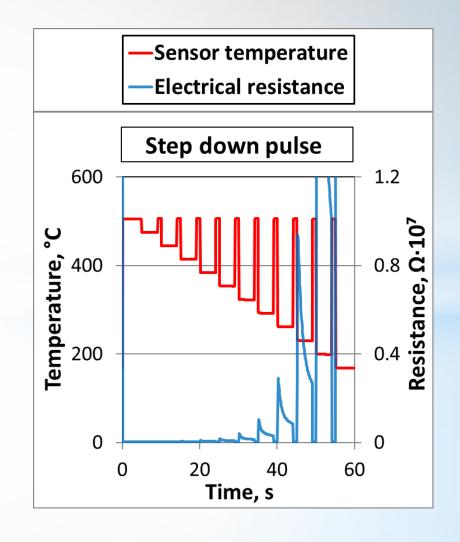

Для повышения селективности определения газов использовались различные температурные режимы работы:

- Степень связывания молекул газа уменьшается с повышением температуры.
- Необходим нагрев для приведения датчика в исходное состояние.
- Для обеспечения временного разрешения необходимо использовать циклический нагрев и охлаждение.

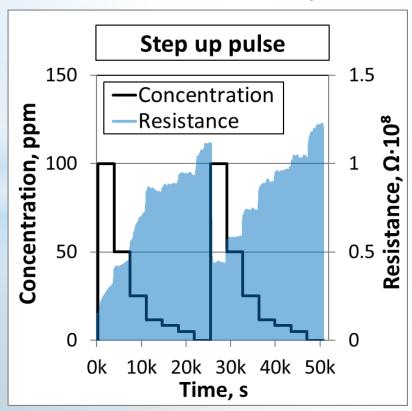

- □ Линейный нагрев и охлаждение
 - Линейный длинный
 - Линейный короткий
- Ступенчатое плавное повышение или понижение температуры
 - Пошаговый вверх
 - Пошаговый вниз
- □ Ступенчатое плавное повышение или понижение температуры с кратковременными импульсными скачками температуры до максимума.
 - Импульсный вверх
 - Импульсный вниз

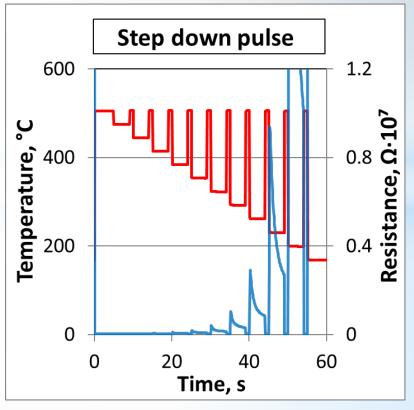

- □ Линейный нагрев и охлаждение
 - Линейный длинный
 - Линейный короткий
- Ступенчатое плавное повышение или понижение температуры
 - Пошаговый вверх
 - Пошаговый вниз
- Ступенчатое плавное повышение или понижение температуры с кратковременными импульсными скачками температуры до максимума.
 - Импульсный вверх
 - Импульсный вниз


- □ Линейный нагрев и охлаждение
 - Линейный длинный
 - Линейный короткий
- Ступенчатое плавное повышение или понижение температуры
 - Пошаговый вверх
 - Пошаговый вниз
- □ Ступенчатое плавное повышение или понижение температуры с кратковременными импульсными скачками температуры до максимума.
 - Импульсный вверх
 - Импульсный вниз


- □ Линейный нагрев и охлаждение
 - Линейный длинный
 - Линейный короткий
- Ступенчатое плавное повышение или понижение температуры
 - Пошаговый вверх
 - Пошаговый вниз
- Ступенчатое плавное повышение или понижение температуры с кратковременными импульсными скачками температуры до максимума.
 - Импульсный вверх
 - Импульсный вниз

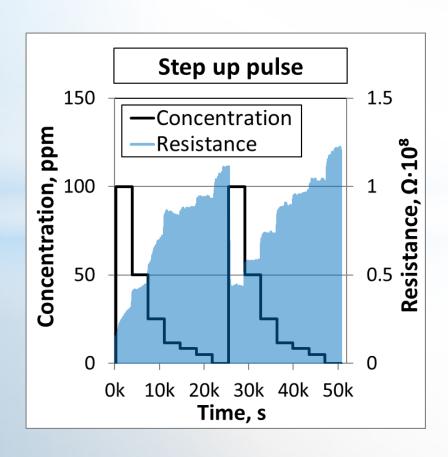
- □ Линейный нагрев и охлаждение
 - Линейный длинный
 - Линейный короткий
- Ступенчатое плавное повышение или понижение температуры
 - Пошаговый вверх
 - Пошаговый вниз
- □ Ступенчатое плавное повышение или понижение температуры с кратковременными импульсными скачками температуры до максимума.
 - Импульсный вверх
 - Импульсный вниз




- □ Линейный нагрев и охлаждение
 - Линейный длинный
 - Линейный короткий
- Ступенчатое плавное повышение или понижение температуры
 - Пошаговый вверх
 - Пошаговый вниз
- Ступенчатое плавное повышение или понижение температуры с кратковременными импульсными скачками температуры до максимума.
 - Импульсный вверх
 - Импульсный вниз

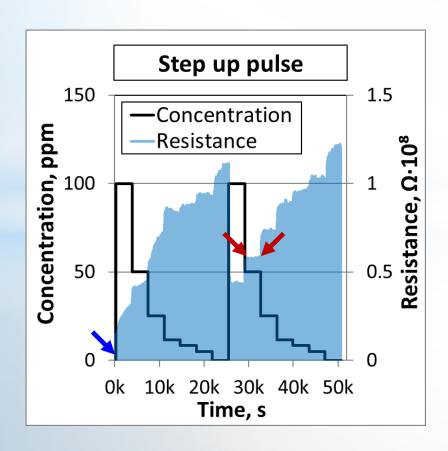
Концентрации газов

В ходе эксперимента были собраны формы сенсорного отклика от 12 датчиков при 6 различных динамиках нагрева и 6 различных концентрациях газа. Несколько серий.



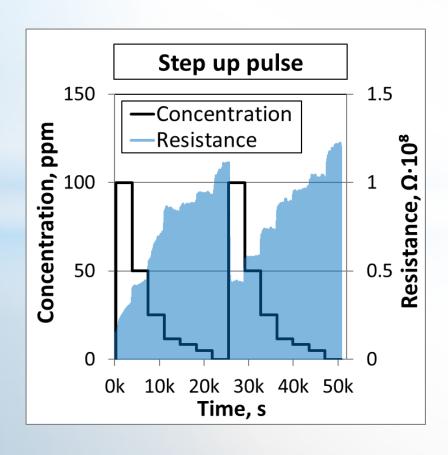
В атмосфере чистого воздуха, а также в воздухе с примесью газов: CO, H₂, CH₄, NH₃, NO, NO₂, H₂S, SO₂, HCOH (только один газ в каждом эксперименте)

Подготовка и предобработка данных


Этапы подготовки и предобработки данных:

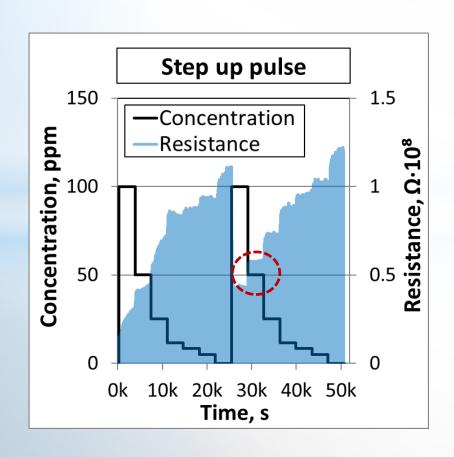
- 1. Преобразование данных в формат:
 - 1 цикл динамики нагрева –
 - 1 пример набора данных.
- 2. Замена значений сенсорного отклика выше 10¹⁰ Ом на фиксированное значение 10¹⁰ Ом, и ниже 10 Ом на фиксированное значение 10 Ом.

Подготовка и предобработка данных


Этапы подготовки и предобработки данных:

- 3. Исключение участков данных, где производилась продувка экспериментальной установки: первые несколько циклов в каждом отдельном эксперименте.
- 4. Исключение первых нескольких циклов после изменения концентрации и нескольких циклов непосредственно перед изменением концентрации.

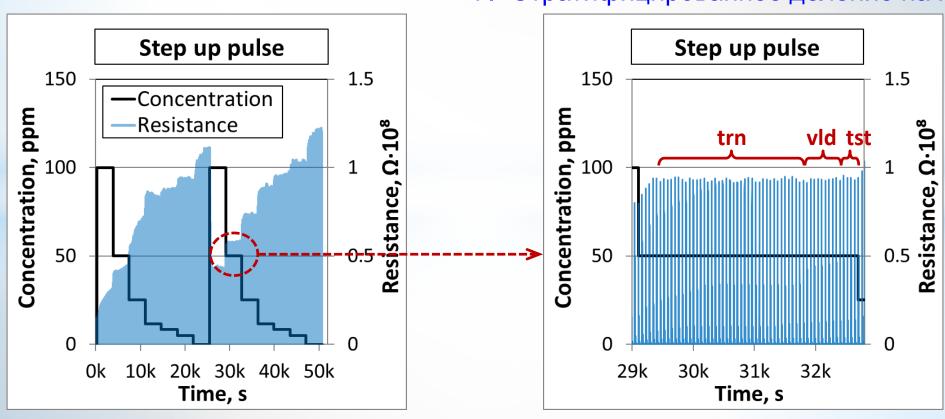
Подготовка и предобработка данных


Этапы подготовки и предобработки данных:

- 5. Логарифмирование значений сенсорного отклика.
- 6. Масштабирование значений концентрации газов на диапазон минимума-максимума.

Подготовка и предобработка данных

Этапы подготовки и предобработки данных:

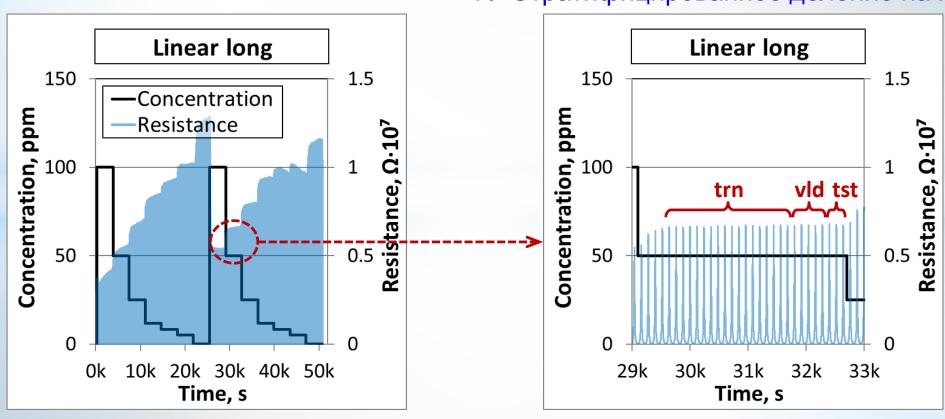

- 7. Стратифицированное деление на поднаборы Из каждой области с фиксированной концентрацией газа:
 - В тренировочный набор отбирались первые **n** циклов,
 - Последующие **m** циклов в валидационный набор,
 - Последующие **k** циклов в тестовый набор

Затем процедура повторялась для остальных участков с фиксированной концентрацией.

Подготовка и предобработка данных

Этапы подготовки и предобработки данных:

7. Стратифицированное деление на поднаборы



n:m:k = 40:10:5

Подготовка и предобработка данных

Этапы подготовки и предобработки данных:

7. Стратифицированное деление на поднаборы

n:m:k = 18:5:3

Методы машинного обучения

- □ Линейная и логистическая регрессия
 - Без регуляризации
 - C L1 или L2 регуляризацией
- Деревья решений
 - Случайный лес
 - Градиентный бустинг
- □ Многослойный персептрон

Все методы показали качественно похожие результаты

Постановка задачи

Эксперимент №1

- □ Оценка чувствительности сенсоров
- □ Использование сенсоров по одному
- Отдельные наборы данных для каждого газа
 - 1 файл 1 газ

Эксперимент №2

- Оценка селективности сенсоров
- □ Использование комплекта сенсоров
- □ Объединенные наборы данных
 - 1 файл все газы

Результаты. Эксперимент №1.

Задача регрессии. Использование одного сенсора.

Качество решения (R²) задачи регрессии (тривиальная модель R²=0) для различных методов машинного обучения на 1-й серии данных

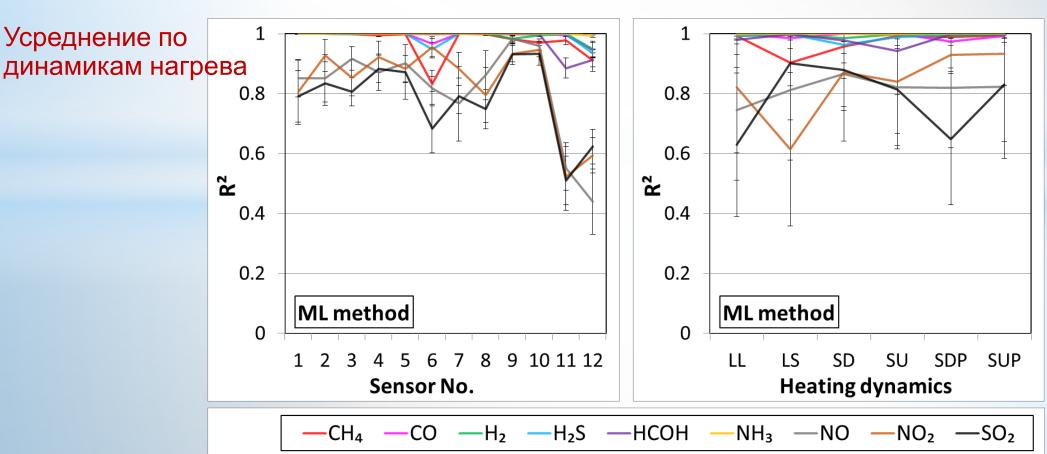
LR-L1

Gas		Sensor No												
Gas	1	. 2	3	4	5	6	7	8	9	10	11	12		
CH₄	0.922	0.942	0.923	0.907	0.939	0.585	0.921	0.946	0.258	0.357	0.855	0.833		
СО	0.961	0.966	0.965	0.959	0.967	0.933	0.951	0.972	0.945	0.956	0.976	0.853		
H ₂	0.984	0.978	0.968	0.938	0.943	0.935	0.957	0.938	0.317	0.930	0.917	0.755		
H₂S	0.987	0.992	0.984	0.972	0.985	0.905	0.969	0.993	0.971	0.985	0.901	0.820		
НСО	H 0.943	0.949	0.957	0.943	0.963	0.937	0.960	0.962	0.953	0.951	0.811	0.887		
NH ₃	0.926	0.967	0.957	0.923	0.933	0.853	0.960	0.962	0.967	0.961	0.656	0.804		
NO	0.788	0.795	0.866	0.837	0.837	0.808	0.897	0.890	0.861	0.862	0.529	0.678		
NO ₂	0.817	0.840	0.856	0.831	0.801	0.837	0.851	0.857	0.641	0.655	0.410	0.545		
SO ₂	0.644	0.658	0.661	0.657	0.730	0.496	0.678	0.681	0.503	0.508	0.545	0.560		

Gas	Sensor No													
	1	2	3	4	5	6	7	8	9	10	11	12		
CH₄	0.977	0.983	0.978	0.972	0.977	0.647	0.981	0.983	0.408	0.466	0.883	0.793		
СО	0.980	0.986	0.989	0.983	0.978	0.964	0.990	0.987	0.953	0.977	0.981	0.803		
H ₂	0.994	0.991	0.986	0.984	0.968	0.985	0.988	0.984	0.469	0.919	0.938	0.708		
H₂S	0.991	0.995	0.995	0.993	0.993	0.955	0.994	0.996	0.982	0.993	0.900	0.685		
нсон	0.980	0.989	0.984	0.985	0.978	0.966	0.990	0.991	0.973	0.974	0.880	0.913		
NH₃	0.982	0.992	0.985	0.984	0.985	0.959	0.987	0.991	0.988	0.989	0.816	0.629		
NO	0.929	0.926	0.949	0.948	0.948	0.888	0.964	0.954	0.931	0.933	0.785	0.718		
NO ₂	0.909	0.890	0.921	0.878	0.863	0.838	0.903	0.896	0.819	0.824	0.609	0.091		
SO ₂	0.794	0.818	0.812	0.782	0.849	0.688	0.833	0.846	0.592	0.621	0.581	0.606		

2	0.994	0.991	0.986	0.984	0.968	0.985	0.988	0.984	0.469	0.919	0.938	0.708	N
₂ S	0.991	0.995	0.995	0.993	0.993	0.955	0.994	0.996	0.982	0.993	0.900	0.685	•
сон	0.980	0.989	0.984	0.985	0.978	0.966	0.990	0.991	0.973	0.974	0.880	0.913	
Н₃	0.982	0.992	0.985	0.984	0.985	0.959	0.987	0.991	0.988	0.989	0.816	0.629	
0	0.929	0.926	0.949	0.948	0.948	0.888	0.964	0.954	0.931	0.933	0.785	0.718	
O2	0.909	0.890	0.921	0.878	0.863	0.838	0.903	0.896	0.819	0.824	0.609	0.091	
O ₂	0.794	0.818	0.812	0.782	0.849	0.688	0.833	0.846	0.592	0.621	0.581	0.606	

Gas CH ₄ CO H ₂ H ₂ S HCOH NH ₃		Sensor No												
Gas	1	2	3	4	5	6	7	8	9	10	11	12		
CH₄	1.000	1.000	0.999	0.999	1.000	0.844	1.000	1.000	0.994	0.983	0.966	0.921		
СО	1.000	1.000	1.000	1.000	1.000	0.984	1.000	1.000	0.999	1.000	0.996	0.960		
H ₂	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.993	0.998	1.000	0.972		
H₂S	1.000	1.000	1.000	1.000	1.000	0.954	1.000	1.000	1.000	1.000	0.998	0.938		
нсон	1.000	1.000	1.000	1.000	1.000	0.999	1.000	1.000	1.000	0.999	0.888	0.931		
NH₃	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.994		
NO	0.886	0.891	0.934	0.886	0.937	0.861	0.870	0.926	0.988	0.967	0.554	0.487		
NO ₂	0.876	0.966	0.885	0.946	0.914	0.972	0.934	0.863	0.956	0.955	0.594	0.623		
SO ₂	0.822	0.856	0.836	0.894	0.908	0.715	0.812	0.774	0.965	0.959	0.539	0.664		

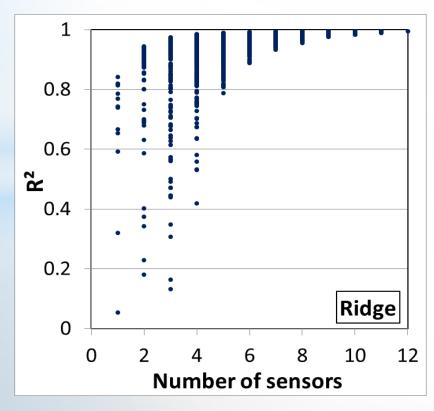

C	Sensor No													
Gas	1	2	3	4	5	6	7	8	9	10	11	12		
CH₄	1.000	1.000	0.999	0.995	0.999	0.832	1.000	0.998	0.981	0.971	0.977	0.911		
СО	1.000	1.000	1.000	1.000	0.999	0.967	1.000	1.000	0.998	0.999	0.994	0.946		
H ₂	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.984	0.995	1.000	0.947		
H₂S	1.000	1.000	0.999	1.000	1.000	0.948	1.000	1.000	1.000	1.000	0.999	0.935		
нсон	1.000	1.000	1.000	1.000	1.000	0.999	1.000	1.000	0.999	0.999	0.885	0.913		
NH₃	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.992		
NO	0.850	0.851	0.917	0.871	0.901	0.818	0.767	0.861	0.984	0.960	0.550	0.439		
NO₂	0.806	0.927	0.853	0.922	0.883	0.955	0.883	0.795	0.933	0.946	0.523	0.594		
SO₂	0.791	0.834	0.806	0.883	0.872	0.683	0.792	0.748	0.931	0.934	0.511	0.623		

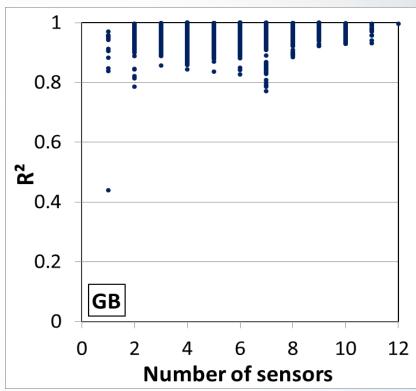
GB

Результаты. Эксперимент №1.

Задача регрессии. Использование одного сенсора.

Усредненное качество решения (R²) по различным сенсорам и динамикам нагрева для градиентного бустинга на 1-й серии данных


Усреднение по сенсорам


Результаты. Эксперимент №2.

Задача регрессии. Использование комплекта сенсоров.

Качество решения (R²) для всех сочетаний сенсоров.

Газ – СН₄, линейная короткая динамика нагрева, 1-я серия данных.

Заключение

Выводы

- □ Наилучшая динамика нагрева линейная длинная
 - ✓ Уменьшение длины (линейная короткая) динамики нагрева приводит к ухудшению качества решения.
- □ Динамики нагрева с повышением температуры
 показывают лучшие результаты, чем с понижением температуры.
- □ Сенсоры на основе SnO₂ в среднем показывают лучшие результаты, чем сенсоры на основе TiO₂.
- Хуже всего определяются концентрации газов NO, NO₂, SO₂

Заключение

Выводы

- □ При использовании объединенных наборов данных, содержащих все газы, наблюдается ухудшение качества решения регрессионной задачи
- □ Использование данных нескольких сенсоров позволяет улучшить качество решения по сравнению с использованием данных одного сенсора
 - Для линейных методов требуется большее количество сенсоров, используемых одновременно, для получения хорошего качества решения

Спасибо за внимание!