Гамма-астрономия ультравысоких энергий и проект TAIGA-100

Кузьмичев Л.А

4.07

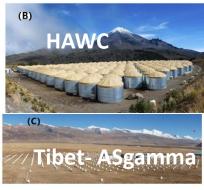
План доклада

- 1. Гамма-астрономия ультравысоких энергий
- 2 Действующие установки и проекты
- 3. проект TAIGA100

Гамма-астрономия ультравысоких энергий

1. 1- 100 ГэВ — гамма-астрономия высоких энергий Детекторы на спутниках, S $^{\sim}1$ m 2 , Ω $^{\sim}$ 1str Открыто более 2000 источников

2. 100 ГэВ - 100 ТэВ - гамма-астрономия очень высоких энергий (VHE) Атмосферные черенковские телескопы $S \sim 10^4 - 10^5 \text{ m}^2 \quad \Omega \sim 0.01 \text{str}$ открыто более 200 источников



3.Выше 100 ТэВ — гамма- астрономия ультравысоких энергий (UHE) Высокогорные установки ШАЛ $S \sim 10^4 - 10^6 \, \text{m}^2 \, \Omega \sim 1 \, \text{str}$ открыто более 40 источников

Какие астрофизические источники могут ускорять космических лучи до ПэВных энергий? Как это подтвердить?

- 1. Остатки сверхновые звезды (SNR)
- 2. Пульсарные туманности (PWN)
- 3. Пульсары в двойных системах и микроквазары

Правило Хилласа

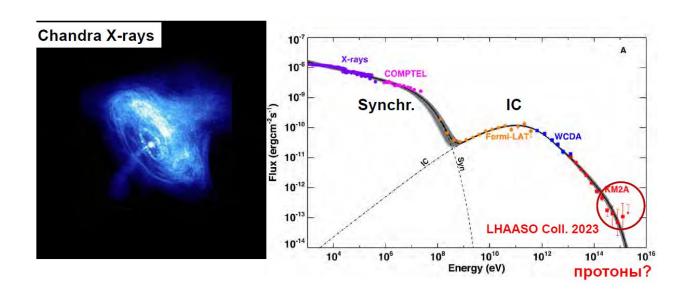
Emax = $v/c \times Ze \times B \times L \times \eta$

Ze — заряд ядра

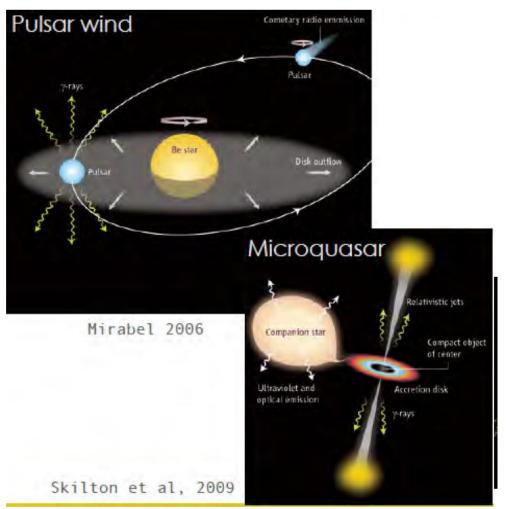
В – магнитное поле

L – размер источника

 $\eta = 0.05-1$


- 4. Области активного звездообразования
- 5. Черная дыра в центре Галактики и галактики Андромеда
- 6. Гамма-всплески

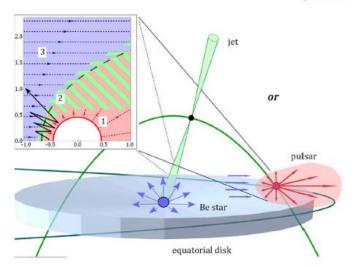
Гамма-кванты от Крабовидной туманности


Источник энергии — вращающаяся нейтронная звезда Излучаемая энергия — dE/dt = $10^{35} - 10^{39}$ эрг/сек

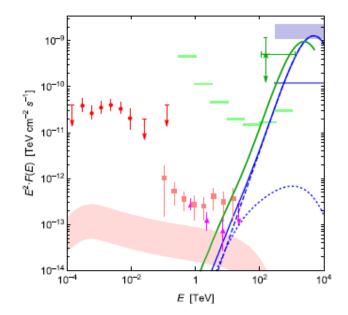
Emax = $2 \text{ ПэВ} \times Z \times \eta \times (\text{ dE/ dt }/\text{ 10}^{36} \text{ эрг/сек })^{1/2}$ $\eta - «эффективность» пульсара <math>-0.1 - 1$

Е тах для протона может достигнуть ~ 60 ПэВ для электрона ~ 5-10 ПэВ

Гамма-излучение от тесных двойных звезд и мироквазаров

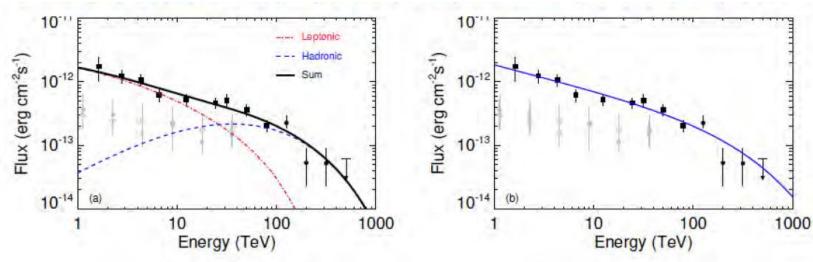


микроквазар


в центре черная дыра с массой 3-5 массы солнца. открыто около 20, возможно много больше

Пульсары в двойных системах

Bykov et al.

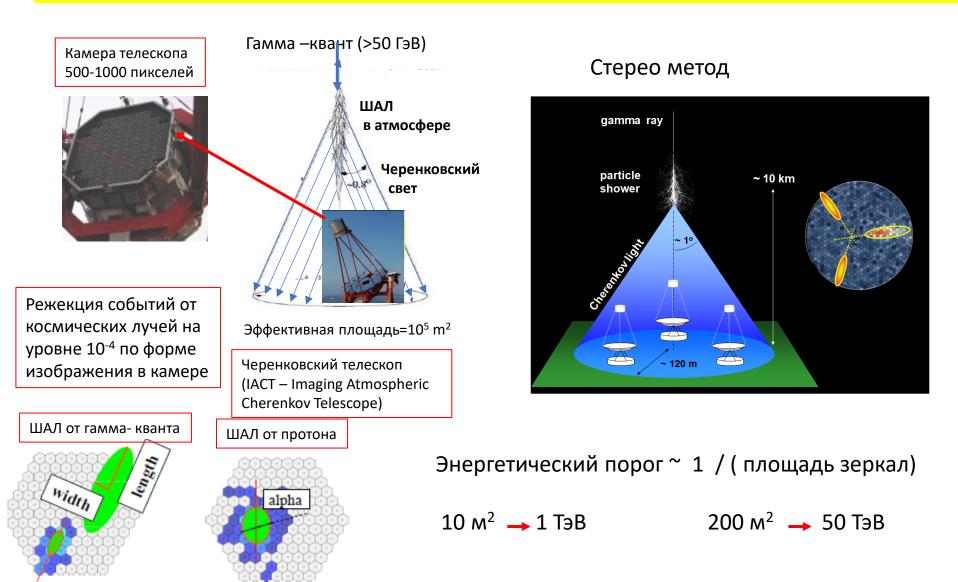


Пульсарный ветер сталкивается со звездным ветром массивных горячих звезд (ОВ- звезды) Протоны могут ускорятся до 10 ПэВ (Bykov et al. 2021. 2024)

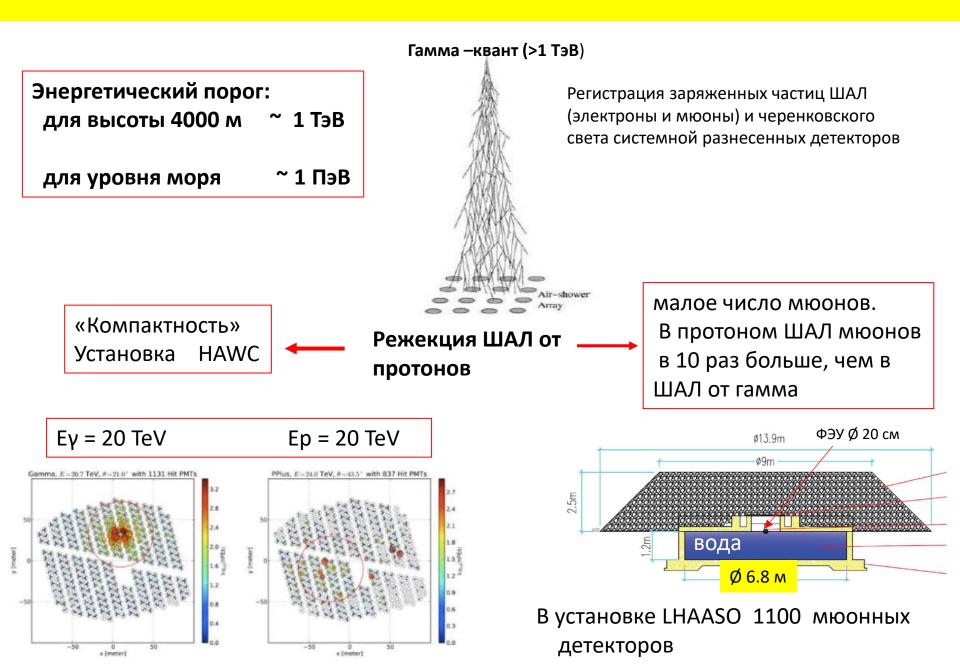
Возможно такой механизм рождения Пэвного фотона зарегистрированный LHAASO от источника J2032+4127, возможно гамма-кванты от этого источника видели на установке Ковер-2

Поток гамма квантов от микроквазара SS433

Модель предполагает мощность ускорителя лептонов с энергией выше 1 ТэВ $> 6 \times 10^{35}$ эрг/с , для ПэВ протонов порядка 10^{38} эрг/с.

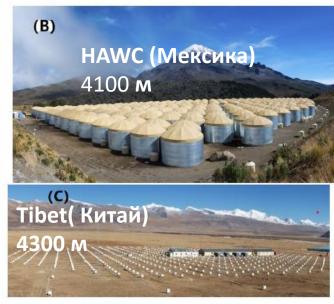

Полная светимость SS 433 > 10³⁹ эрг/с (сверх-эддингтоновская)

Требуется примерно 10 таких источников для объяснения спектра космических лучей при энергии ~ 1 ПэВ


Действующие установки и проекты

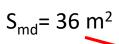
Атмосферные черенковские гамма-телескопы

(IACTs – Imaging Atmospheric Cherenkov telescopes)



Установки, регистрирующие заряженную компоненту ШАЛ

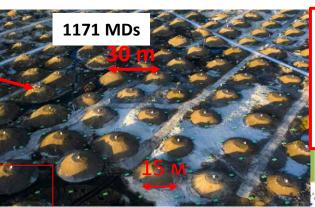
Высокогорные установки



LHAASO: 1 km², 5200 сцинтилляционных детекторов, 1200 водных мюонных детекторов

HAWC: 0.02 km², 300 водных баков

Tibet : 0.06 km^2 , 64 водных мюонных детекторов (1/20 LHAASO)


Large High Altitude Air Shower Observatory (LHAASO), 4410 м над уровнем моря, Тибет

 $Stot = 40000 \text{ m}^2$

Мюонные детекторы 4% от полной площади установки

Очень хорошее Гамма-адронное разделение при энергии выше 30 ТэВ Время наблюдения источников>1000 ч. в год!

Угловое разрешение: 0.25°

1.1 km²

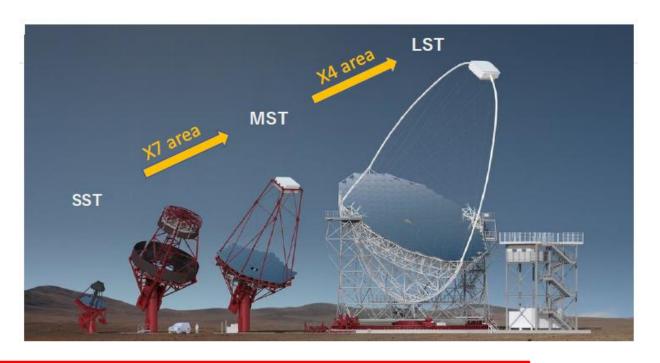
Энергетическое Разрешение: 20%

18 telescopes FoV=16°×16°

5216 SD S= 1m² Телескопы для исследования массового состав КЛ

ENDA -400

Система электронныхнейтронных детекторов для изучения адронов ШАЛ (в развертывании) Проекты в области гамма-астрономия ультравысоких энергий:


Черенковская обсерватория СТАО

Высокогорная обсерватория SWGO

Гибридная установка TAIGA-100

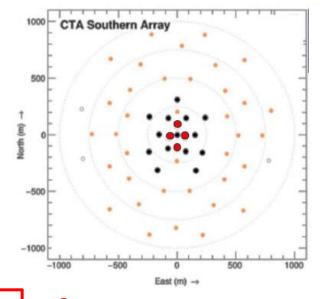
Cherenkov Telescope Array Observatory (CTAO)

1000 участников из 28 стран. Начало обсуждения ~ 2005 год

FoV and Sensor :	SST	MST	LST	
	10.5 ° , SiPM	7. 5°, PMT	4.3 °, PMT	
Diameter	4.3 m	11.5 m	23 m	

Alpha Configuration of СТАО (это планы)

CTA –North (La Palma)



- LST 4 (в 2026)
- \bullet MST -9

CTA- South (Chili)

Развертывание

к ~2030 -2035

MST -14

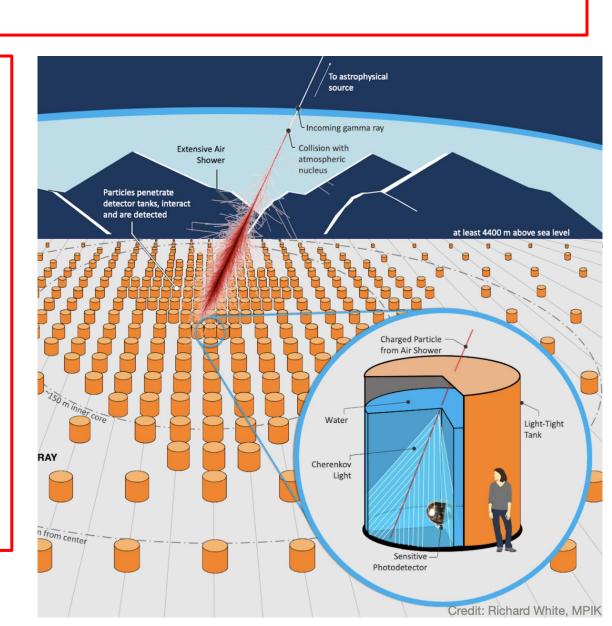
LST-4

SST - 37 (на площади 2× 2 км)

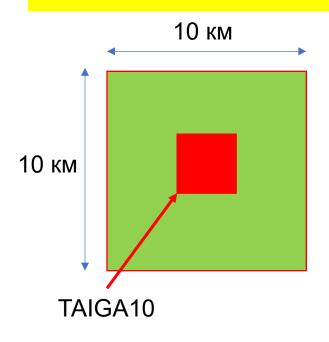
The Southern Wide-filed Gamma-ray Observatory (SWGO)

Система больших водных баков на площади до 4 км²

Возможное положение: Перу, Чили, Аргентина (от 14° до 24° Ю.Ш.) Высота: от 4.400 до 4850 м.


Энергетический диапазон: 100 ГэВ – 1 ПэВ

Планы

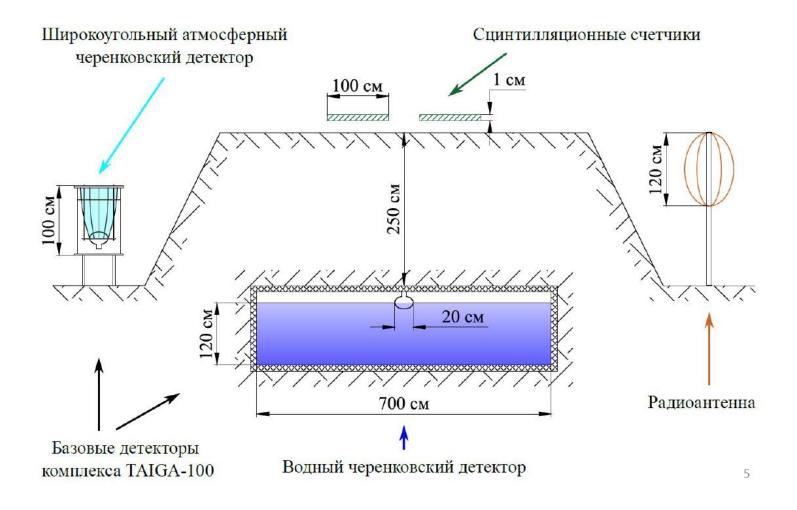

2025 – выбор места

2026 – создание прототипа

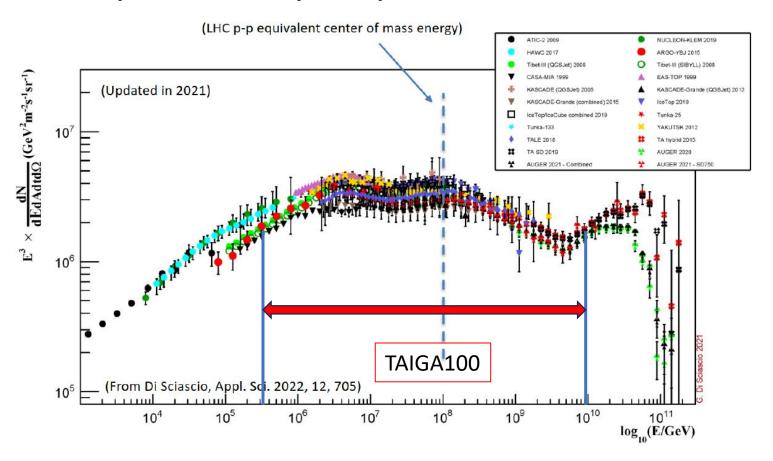
2027 – начало строительства

TAIGA100 – возможность изучать область энергий выше 1 ПэВ

- \sim 3500 широкоугольных черенковских детекторов: 1 ФЭУ , FoV \sim 2 стер .
- \sim 3500 мюонных водных мюонных детекторов, площадью 40 м 2 .
- 6-7 IACTs, диаметр зеркал 4 м (от установки TAIGA-1)
- 1-2 IACTs, диаметр зеркала 10 м (мини ALEGRO)
- 1-2 малых флюоресцентных телескопов


Одна супер станция (СС): черенковский детектор мюонный детектор сцинтилляционный детектор (1-2 м²) радио антенна

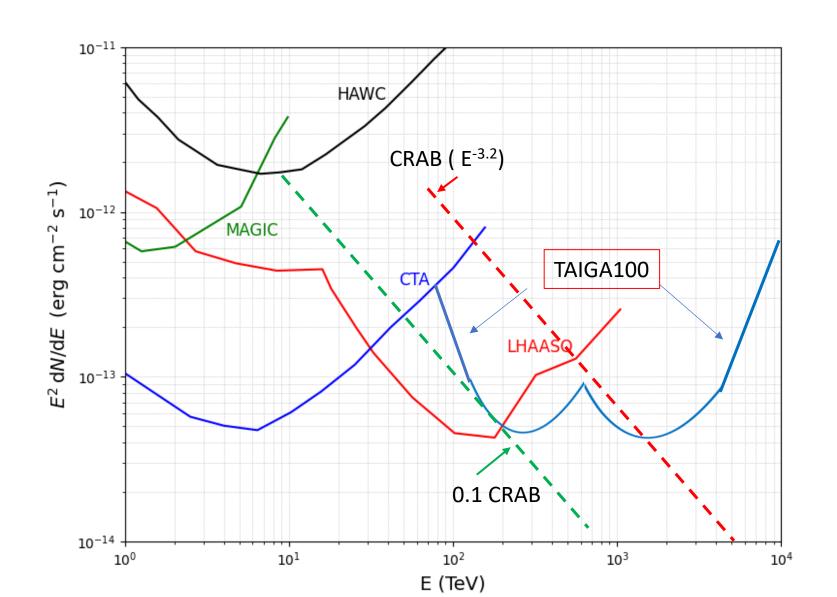
Для TAIGA10 – расстояние между СС- 100м Порог ~200 ТэВ 600 станций


Для TAIGA100 – расстояние между СС- 150 м Порог ~400 ТэВ

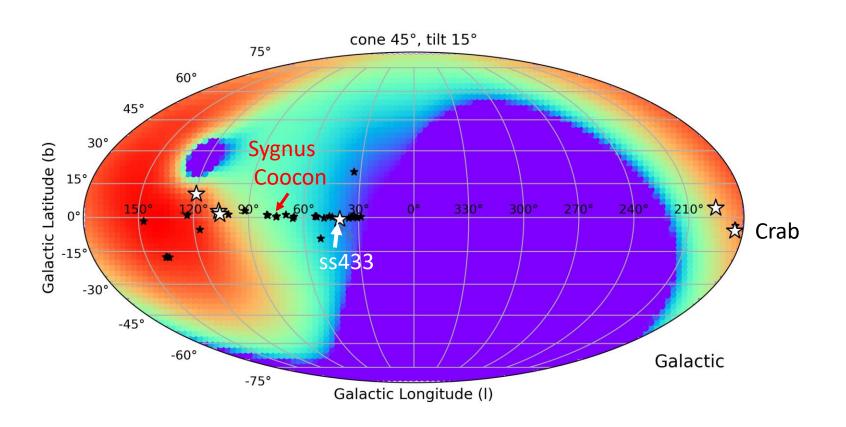
3000 станции

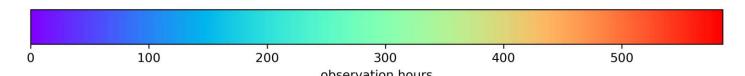
Станция установки

Научная программа



- 1. Какие источники космических лучей в этой области энергий?
- 2. Почему такая форма спектра?
- 3. Какой и почему такой массовый состав космических лучей?


Научная программа


- 1. Гамма астрономия ультравысоких энергий. Диффузное гамма- излучение в диапазоне 1 — 10 ПэВ
- 2. Космические лучи в диапазоне 10^{14} $10^{19}\,$ эВ . $10^6\,$ событий в год с энергией $10^{17}\,$ возможностью выделять протоны
- 3. Поиск фотонов в диапазоне $10^{17} 10^{18}$ эВ
- 4. Транзиентнеые явления и гамма-всплески
- 5. Горизонтальные ливни и ливни от нейтрино масса воздуха над установкой 10^9 тонн. Искать ШАЛ с углом большим 60 градусом с большим числом электронов
- 6. Экзотика (темная материя, нарушение Лоренц инвариантности, странглеты и т.д)
- 7. Геофизика грозы и ШАЛы

Дифференциальная чувствительность (4 бина на порядок) 5сигма или 10 событий

Время наблюдения за год (с 22.07 по 22.05 (след. год)

Выбор места развертывания установки

Астроклимат

ю безоблачных ночей, прозрачность атмосферы, антропогенная засветка и т.д. Инфраструктура

Выбор места развертывания установки

Vicinity of Gakhany village (Irkutsk region)

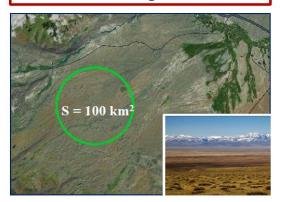
Borgoy Steppe (Buryatia Republic) Постер А.Ивановой и др. (НИИПФ ИГУ)

53.11° N., 104.91° E.

600 - 700

49.89° N., 88.22° E.

1700 - 1800



50.84° N., 105.81° E.

700 - 800

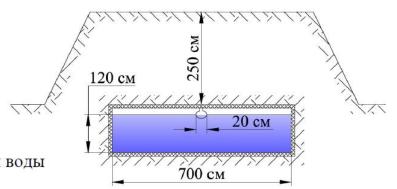
Chuya Steppe (Altai Republic)

Kalmykia Republic (3 potential sites)

46.17° N., 45.34° E. (1) 46.32° N., 46.37° E. (2) 44.95° N., 46.65° E. (3)

Анализ астроклиматических и топографических особенностей площадок *					
Параметр	п. Торы	с. Гаханы	Боргойская степь	Чуйская степь	Республика Калмыкия
Годовое количество осадков, мм	300 – 350	250-300	< 250	< 200	200-340
Глубина снежного покрова, см / продолжительность устойчивого снежного покрова, месяцы	10-15 / 3.5 - 4	9-12 / ~ 3	2-3 / ~ 2	0.01 - 2 / ~ 2	0.01 – 2 / постоянный снежный покров отсутствует
Антропогенная засветка, мк B т \times м $^{-2}$ \times ср $^{-1}$	~ 5	~5 **	< 5	< 5	< 5 (1, 2, 3)
Прозрачность атмосферы, атмосферная оптическая толща АОТ	0.18	0.12	0.11	0.19	0.07 (1), 0.09 (2), 0.1 (3)
Количество безоблачных ночей, %	45 – 50 %	60 – 64 %	68 – 71 %	70 – 75 %	40 - 45% (1) ** 45 - 47% (2) ** 30 - 35% (3) **
Влажность (количество водяного пара в атмосфере), кг/м ²	3.0-3.2	3.4-3.5	3.1-3.3	2.2-2.5	5.4 - 5.7 (1) ** 5.6 - 5.8 (2) ** 5.8 - 6.2 (3) **
Средняя ночная температура в зимний/летний периоды, °C	-28.7	-28.8	-28.2	-28.9	~-5
среднегодовая / минимальная среднемесячная ночная температура грунта на глубине 100 - 289, ° С ***	2. / -0.45	1. / -0.65	1.6 / -0.8	-2.4 ** / -13.5 **	> 0 / > 0

Детекторы установки

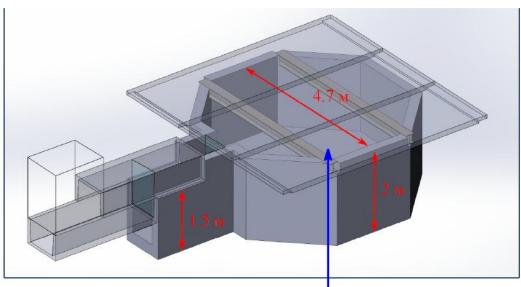

- 1. Широкоугольные черенковские станции
- 2. Водные черенковские мюонные детекторы
- 3. Атмосферные черенковские телескопы
- 4. Сцинтилляционные детекторы
- 5 Флюоресцентные телескопы
- 6. Радиоантенны

Широкоугольные черенковские детекторы

Водный черенковский детектор

- ФЭУ диаметром ~ 20 см
- Площадь детектора $\sim 40 \text{ м}^2$
- Прозрачность воды ≥ 30 м
- Динамический диапазон ~ 10⁴ частиц
- Диффузный отражатель
- Коэффициент отражения ≥ 95%
- Отсутствие подогрева и системы очистки воды

Мешок для воды должен быть полностью герметичен, очищен от бактерий и грибов, волос и остатков пищи. В воду возможно на добавить немного хлора



Испытание мешка

Прототип водного детектора

- Ж/б конструкция
- Заглубление ~ 1.5 м
- Толщина насыпи ~ 2.5 м
- Объем воды $\sim 4 \text{ м}^3$
- Система термодатчиков

Вопросы методики & machine learning

- 1. Улучшить выделение событий от ШАЛ в оптической стации на фоне светового фона увеличение числа стаций в событии улучшение угловой точности и понижение энергетического порога
- 2. Разделение событий ШАЛ от гамма квантов от ШАЛ от протонов и ядер по форме сигналов в станции и топологии сработавших станций
- 3. Адрон- гамма разделение по топологии сработавших мюонных детекторов и числу мюонов
- 4. Восстановление массового состава космических лучей по числу мюонов и распределению света от оси ШАЛ

Заключение

TAIGA-100 открывает уникальные возможности не для решения задач гамма-астрономии ультравысоких энергий и космических лучей сверхвысоких энергий и исследования многих других астрофизических объектов и явлений

Основные детекторы установки (черенковские водные мюонные детекторы и широкоугольные черенковские детекторы) основаны на проверенной методике и успешно реализованы в установках Auger, LHAASO, TAIGA-1 и могут быть созданы из доступных комплектующих