

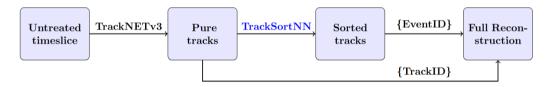
Graph neural network with an attention mechanism for clustering particle tracks by events in the SPD experiment at the NICA accelerator

^{1,2}Omelianchuk S.S., ^{2,3}Ososkov G.A., ²Talochka E.N.

¹Branch of MSU in Dubna, ²JINR LIT ³Dubna University

June 03, 2025

The task is the classification of reconstructed tracks by event The approach uses deep ML methods for reconstruction and classification.



Results of a Siamese Neural Network with an encoder^{*M.Borisov,P.Goncharov...* 2024}

	Fixed	Unfixed	
Metrics	100 epochs	100 epochs	
Precision	$0,\!811$	$0,\!574$	
Recall	$0,\!843$	$0,\!651$	
Accuracy	$0,\!895$	$0,\!587$	

Disadvantages

- **1** Inability to evaluate with missing hits.
- 2 Necessity of information about the number

Datasets

General algorithm for timeslice generation:

$$n_{tracks} \sim U[2, n_{tracks}^{max}] \qquad P(N_{events} = k) = \frac{\overline{N}_{events}^{k}}{k!} e^{-\overline{N}_{events}} \qquad n_{fakes} = 0$$

Tracks from SPD simulation:

- Key characteristics:
 - **1** All hits in a track are limited to $r_{\phi}^{min} = 150 \, mm, \ r_{\phi}^{max} = 850 \, mm$ and are equidistant in $r_{\phi} = \sqrt{x^2 + y^2}.$
 - 2 Each track consists of a large number of hits in the range (28, 35).

Tracks from TrackML:

• Key characteristic:

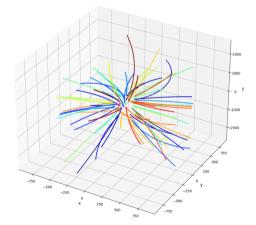
.

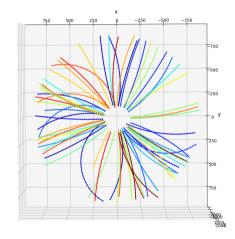
1 All hits in a track are limited to

 $r_{\phi}^{min} = 50 \, mm, \ r_{\phi}^{max} = 1000 \, mm$ and not equidistant in $r_{\phi} = \sqrt{x^2 + y^2}.$

2 Each track consists of a small number of hits in the range (3, 20).

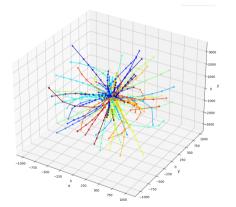
SPD Timeslices

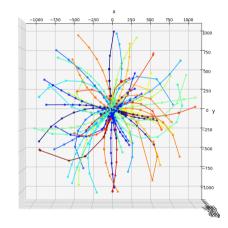




▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

TrackML Timeslices





The main idea is use GANN for permutation-invariant computations.

Advantages:

- **1** Independence from the number of hits in a track and the number of events in the timeslice.
- **2** Success of the graph model in track reconstruction at $LHC^{arXiv:2007.13681v2}$.

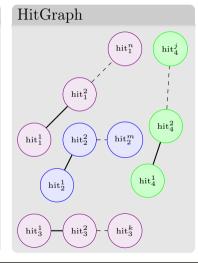
Disadvantages:

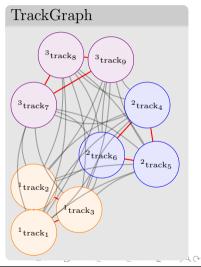
- **1** Large computational graphs.
- **2** Sensitivity to class imbalance.

Graph representation

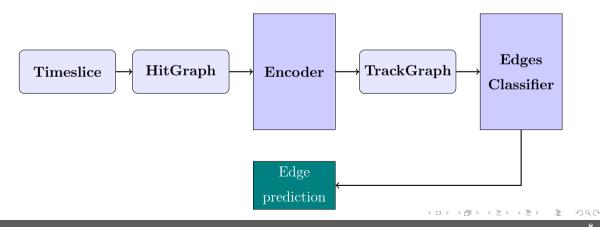
Timeslice

Timeslice					
x	У	z	tr_{id}	ev_{id}	
-118.7	26.4	278.6	0	0	
-138.8	31.3	301.7	0	0	
-158.9	36.3	325.0	0	0	
-21.6	128.4	26.4	1	0	
-25.6	148.7	11.5	1	0	
-29.3	169.1	-3.4	1	0	
110.3	101.0	63.5	2	1	
125.7	114.7	42.3	2	1	
141.2	128.2	20.8	2	1	
156.9	141.6	-0.5	2	1	





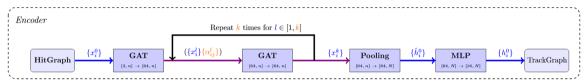
The general architecture of the model contains two main blocks: Encoder and Classifier.



Encoder

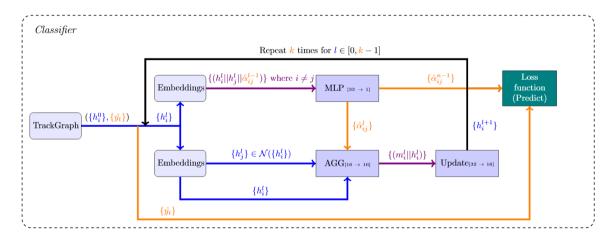
λT

Encoder architecture:



The encoder works as follows:

$$\begin{aligned} x_i^l &= \sum_{j \in \mathcal{N}(i)} \alpha_{ij}^l \mathbf{W}^l \cdot \operatorname{Tanh}(\sum_{k \in \mathcal{N}(j)} \alpha_{jk}^{l-1} \mathbf{W}^{l-1} x_k^{l-1})) \qquad \hat{h}_i^0 = \frac{1}{N_i} \sum_{j=1}^{N_i} x_j^k \\ \alpha_{ij}^l &= \frac{\operatorname{Exp}[\operatorname{LeakyReLU}(\mathbf{a}^T[\mathbf{W}^l x_i^l + \mathbf{W}^l x_j^l])]}{\sum_{k \in \mathcal{N}(i)} \operatorname{Exp}[\operatorname{LeakyReLU}(\mathbf{a}^T[\mathbf{W}^l x_i^l + \mathbf{W}^l x_k^l])]} \end{aligned}$$



◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の < @ ◆

Loss function and Metrics

イロト イタト イヨト イヨト 三日

Balanced Focal Loss:

$$\mathcal{L} = -\frac{1}{N} \sum_{i=1}^{N} \omega_i (1 - p_t)^{\gamma} \ln(p_t) \qquad \qquad \omega_i = y_i \omega_p + (1 - y_i) \omega_n$$

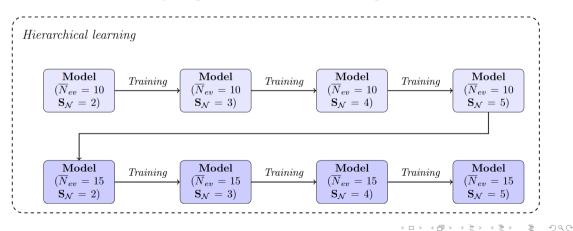
where y_i is the truth label of edge, $p_t = p_i$ if the edge is false, $p_t = (1 - p_i)$ if the edge is true, p_i is the model prediction, N is the number of edges, $\omega_p, \omega_n, \gamma$ are adjustable parameters.

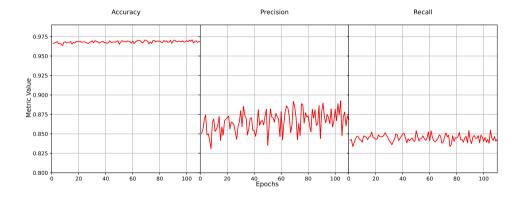
Metrics:

$$Precision = \frac{TP}{TP + FP} \quad Recall = \frac{TP}{TP + FN} \quad Accuracy = \frac{TP + TN}{TP + TP + FP + FN}$$

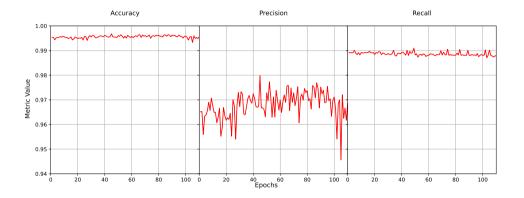
The *i*-th edge is true if the model's prediction $p_i > 0.5$

The main idea is to train model on simple examples with parameters $S_{\mathcal{N}}, \overline{N}_{ev}$. The model is trained until the accuracy drops below 90%. With an samples: 700 train, 300 test.

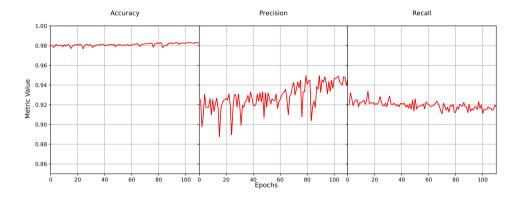




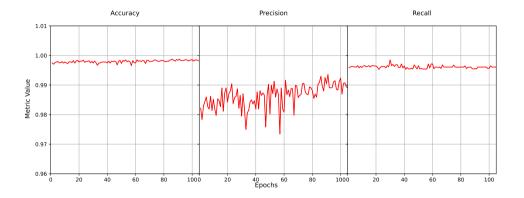
Metrics of the trained model with SPD simulation ($\overline{N}_{ev} = 10, S_{\mathcal{N}} = 5$), parameters ($\omega_p = 1, \omega_n = 0.4, \gamma = 1.5$), on SPD timeslices with ($\overline{N}_{ev} = 10, S_{\mathcal{N}} = 5$)



Metrics of the trained model with SPD simulation ($\overline{N}_{ev} = 15, S_{\mathcal{N}} = 5$), parameters ($\omega_p = 1, \omega_n = 0.6, \gamma = 1.5$), on SPD timeslices with ($\overline{N}_{ev} = 15, S_{\mathcal{N}} = 5$)



Metrics of the trained model with TrackML timeslices ($\overline{N}_{ev} = 10, S_{\mathcal{N}} = 4$), parameters ($\omega_p = 1, \omega_n = 0.5, \gamma = 1.5$), on TrackML timeslices with ($\overline{N}_{ev} = 10, S_{\mathcal{N}} = 4$)



Metrics of the trained model with TrackML timeslices ($\overline{N}_{ev} = 15, S_{\mathcal{N}} = 4$), parameters ($\omega_p = 1, \omega_n = 0.6, \gamma = 1.5$), on TrackML timeslices with ($\overline{N}_{ev} = 15, S_{\mathcal{N}} = 4$)

Successes:

- **1** The model demonstrates excellent metrics in the initial simulation.
- **2** The model does not require information about the number of events for correct evaluations.
- **3** Hierarchical learning improves results on both complex and simple examples. **Limitations:**
 - **1** Computing speed on an Nvidia V100 Tesla GPU: 4.0 timeslice/sec.
 - 2 The model requires good time resolution in the experiment.

Prospects:

I Testing the model on a complete and rigorous simulation of the SPD experiment. $_{\sim \circ \circ \circ}$

Thank you for your attention!