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Introduction and Motivation

The task is the classification of reconstructed tracks by event
The approach uses deep ML methods for reconstruction and classification.

Results of a Siamese Neural Network with an encoderM.Borisov,P.Goncharov... 2024.

Fixed Unfixed
Metrics 100 epochs 100 epochs
Precision 0,811 0,574
Recall 0,843 0,651

Accuracy 0,895 0,587

Disadvantages

1 Inability to evaluate with missing hits.

2 Necessity of information about the number

of events in the timeslice.
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Datasets

General algorithm for timeslice generation:

ntracks ∼ U [2, nmax
tracks] P(Nevents = k) =

N
k
events

k!
e−Nevents nfakes = 0

Tracks from SPD simulation:

Key characteristics:
1 All hits in a track are limited to

rmin
ϕ = 150mm, rmax

ϕ = 850mm and are

equidistant in rϕ =
√

x2 + y2.

2 Each track consists of a large number of

hits in the range (28, 35).

Tracks from TrackML:

Key characteristic:
1 All hits in a track are limited to

rmin
ϕ = 50mm, rmax

ϕ = 1000mm and not

equidistant in rϕ =
√

x2 + y2.

2 Each track consists of a small number of

hits in the range (3, 20).
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SPD Timeslices
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TrackML Timeslices
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Graph Neural Networks

The main idea is use GANN for permutation-invariant computations.

Advantages:

1 Independence from the number of hits in a track and the number of events in the

timeslice.

2 Success of the graph model in track reconstruction at LHCarXiv:2007.13681v2.

Disadvantages:

1 Large computational graphs.

2 Sensitivity to class imbalance.
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Graph representation

Timeslice
Timeslice

x y z trid evid

-118.7 26.4 278.6 0 0

-138.8 31.3 301.7 0 0

-158.9 36.3 325.0 0 0

-21.6 128.4 26.4 1 0

-25.6 148.7 11.5 1 0

-29.3 169.1 -3.4 1 0

110.3 101.0 63.5 2 1

125.7 114.7 42.3 2 1

141.2 128.2 20.8 2 1

156.9 141.6 -0.5 2 1
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Model GANN

The general architecture of the model contains two main blocks: Encoder and
Classifier.

Timeslice HitGraph Encoder TrackGraph
Edges

Classifier

Edge

prediction
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Encoder

Encoder architecture:

The encoder works as follows:

xli =
∑

j∈N (i)

αl
ijW

l · Tanh(
∑

k∈N (j)

αl−1
jk Wl−1xl−1

k )) ĥ0i =
1

Ni

Ni∑
j=1

xkj

αl
ij =

Exp[LeakyReLU(aT [Wlxli +Wlxlj ])]∑
k∈N (i) Exp[LeakyReLU(aT [Wlxli +Wlxlk])]
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Edges Classifier
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Loss function and Metrics

Balanced Focal Loss:

L = − 1

N

N∑
i=1

ωi(1− pt)
γ ln(pt) ωi = yiωp + (1− yi)ωn

where yi is the truth label of edge, pt = pi if the edge is false, pt = (1− pi) if the edge

is true, pi is the model prediction, N is the number of edges, ωp, ωn, γ are adjustable

parameters.

Metrics:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
Accuracy =

TP + TN

TP + TP + FP + FN

The i-th edge is true if the model’s prediction pi > 0.5
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Hierarchical learning

The main idea is to train model on simple examples with parameters SN , N ev. The model
is trained until the accuracy drops below 90%. With an samples: 700 train, 300 test.
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Results
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Metrics of the trained model with SPD simulation (N ev = 10, SN = 5), parameters
(ωp = 1, ωn = 0.4, γ = 1.5), on SPD timeslices with (N ev = 10, SN = 5)
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Results
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Metrics of the trained model with SPD simulation (N ev = 15, SN = 5), parameters
(ωp = 1, ωn = 0.6, γ = 1.5), on SPD timeslices with (N ev = 15, SN = 5)
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Results
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Metrics of the trained model with TrackML timeslices (N ev = 10, SN = 4), parameters
(ωp = 1, ωn = 0.5, γ = 1.5), on TrackML timeslices with (N ev = 10, SN = 4)
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Results
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Metrics of the trained model with TrackML timeslices (N ev = 15, SN = 4), parameters
(ωp = 1, ωn = 0.6, γ = 1.5), on TrackML timeslices with (N ev = 15, SN = 4)
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Conclusions

Successes:

1 The model demonstrates excellent metrics in the initial simulation.

2 The model does not require information about the number of events for correct

evaluations.

3 Hierarchical learning improves results on both complex and simple examples.

Limitations:

1 Computing speed on an Nvidia V100 Tesla GPU: 4.0 timeslice/sec.

2 The model requires good time resolution in the experiment.

Prospects:

1 Testing the model on a complete and rigorous simulation of the SPD experiment.
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Thank you for your attention!
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