

Classifying Russian speech commands with a hardware-deployable spiking neural network transferred from an artificial neural network

Alexey Serenko, Roman Rybka, Alexander Naumov, Alexander Sboev Naumov, Naumov

National research centre Kurchatov Institute

National research nuclear university MEPhI

The purpose of this work

is to establish a baseline accuracy on the task of classifying Russian speech commands

- using a spiking neural network
- that would satisfy the constraints of digital neuroprocessors and evaluate accuracy loss with respect to a conventional neural network

We thus present:

- A spiking neural network obtained by converting a trained conventional network;
 - with its weights quantized into 8-bit integer;
 - with its neurons' thresholds adjusted so as to minimize the conversion loss.
- Its accuracies on the recently-created RuSC dataset.

The RuSC dataset

Network scheme

The neuron with

For the spiking network, then encoded with 98×80 spike sequences

Transferring weights from a ReLU neuron to a spiking neuron

Spiking neuron: the number of output spikes is ClipFloor $(\vec{x} \cdot \vec{w}) = \min \left(\left| \frac{\max(\vec{x} \cdot \vec{w}, 0)}{\Theta} \right|, T \right)$

Conventional neuron: ReLU $(\vec{x} \cdot \vec{w}) = \max(\vec{x} \cdot \vec{w}, 0)$

Transferring weights cause accuracy loss due to the number of spikes differing from the ReLU activation function:

Finding optimal thresholds of spiking neurons: loss metrics to minimize

Resulting accuracies

Network	F1-micro
Originally reported by the dataset authors	0.99
Conventional 2dCNN with float32 weights	0.99
Conventional 2dCNN with int8 weights	0.98
2dCNN with ClipFloor activation with $T = 200$ time steps	0.98
2dCNN with ClipFloor activation with $T = 100$ time steps	0.92
2dCNN with ClipFloor activation with T = 50 time steps	0.77

Conclusion

- The accuracy is 98%, with less than 1% loss relative to the original network,
 - with 8-bit synaptic weights,
 - with audio represented by Mel-Frequency Cepstral Coefficients,
 - and then encoded by spike rates 200 time steps per input audio (which allows real-time processing),
 - with the number of weights and neurons in the network allowing deployment to off-the-shelf neuroprocessors such as TrueNorth or AltAI.
- Optimal thresholds of spiking neurons can be obtained by finding minimal MSE between outputs of layers with ReLU and ClipFloor activation functions.