Classifying Russian speech commands with a hardware-deployable spiking neural network transferred from an artificial neural network Alexey Serenko, Roman Rybka, Alexander Naumov, Alexander Sboev Naumov, Naumov National research centre Kurchatov Institute National research nuclear university MEPhI #### The purpose of this work is to establish a baseline accuracy on the task of classifying Russian speech commands - using a spiking neural network - that would satisfy the constraints of digital neuroprocessors and evaluate accuracy loss with respect to a conventional neural network #### We thus present: - A spiking neural network obtained by converting a trained conventional network; - with its weights quantized into 8-bit integer; - with its neurons' thresholds adjusted so as to minimize the conversion loss. - Its accuracies on the recently-created RuSC dataset. #### The RuSC dataset #### Network scheme The neuron with For the spiking network, then encoded with 98×80 spike sequences #### Transferring weights from a ReLU neuron to a spiking neuron Spiking neuron: the number of output spikes is ClipFloor $(\vec{x} \cdot \vec{w}) = \min \left(\left| \frac{\max(\vec{x} \cdot \vec{w}, 0)}{\Theta} \right|, T \right)$ Conventional neuron: ReLU $(\vec{x} \cdot \vec{w}) = \max(\vec{x} \cdot \vec{w}, 0)$ Transferring weights cause accuracy loss due to the number of spikes differing from the ReLU activation function: #### Finding optimal thresholds of spiking neurons: loss metrics to minimize #### Resulting accuracies | Network | F1-micro | |---|----------| | Originally reported by the dataset authors | 0.99 | | Conventional 2dCNN with float32 weights | 0.99 | | Conventional 2dCNN with int8 weights | 0.98 | | 2dCNN with ClipFloor activation with $T = 200$ time steps | 0.98 | | 2dCNN with ClipFloor activation with $T = 100$ time steps | 0.92 | | 2dCNN with ClipFloor activation with T = 50 time steps | 0.77 | #### Conclusion - The accuracy is 98%, with less than 1% loss relative to the original network, - with 8-bit synaptic weights, - with audio represented by Mel-Frequency Cepstral Coefficients, - and then encoded by spike rates 200 time steps per input audio (which allows real-time processing), - with the number of weights and neurons in the network allowing deployment to off-the-shelf neuroprocessors such as TrueNorth or AltAI. - Optimal thresholds of spiking neurons can be obtained by finding minimal MSE between outputs of layers with ReLU and ClipFloor activation functions.