
1

9th International Conference in Deep Learning
in Computational Physics

ML-Based Optimum Sub-system Size Heuristic for the GPU
Implementation of the Tridiagonal Partition Method

Milena Veneva

✓Bmilena.p.veneva@gmail.com Milena_Veneva mveneva
✓RIKEN Center for Computational Science, supervisor
Dr. Toshiyuki Imamura
✓in collaboration with the Joint Institute for Nuclear Research,
supervisor Dr. Alexander Ayriyan

July 2025, Moscow, Russia.

mailto:milena.p.veneva@gmail.com


2

Tridiagonal partition method (0/3)
0. Starting from the initial SLAE with the following coefficient
matrix.

× ×
× × ×

× × ×
× × ×

× × ×
× × ×

× × ×
× × ×

× × ×
× × ×

× × ×
× × ×

× × ×
× × ×

× ×





x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14



=



y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14


[1] Austin T. M., Berndt M., and Moulton J. D. A memory efficient parallel tridiagonal solver, pp .1–13, Preprint

LA-VR-03-4149 (2004).



3

Tridiagonal partition method (1a/3)
1a. Partitioning.



× ×
× × ×

× × ×
× × ×

× × ×
× × ×

× × ×
× × ×

× × ×
× × ×

× × ×
× × ×

× × ×
× × ×

× ×





x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14



=



y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14





4

Tridiagonal partition method (1b/3)
1b. Obtaining the interface equations (on the device).



■ ■
⊠ × ×

× × ×
× × ⊠

■ ■ ■
■ ■ ■

⊠ × ×
× × ×

× × ⊠
■ ■ ■

■ ■ ■
⊠ × ×

× × ×
× × ⊠

■ ■





x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14



=



ỹ0
y1
y2
y3
ỹ4
ỹ5
y6
y7
y8
ỹ9
ỹ10
y11
y12
y13
ỹ14





5

Tridiagonal partition method (2/3)

2. Assembling the interface system and solving it with the Thomas
method (on the host).


■ ■
■ ■ ■

■ ■ ■
■ ■ ■

■ ■ ■
■ ■




x0
x4
x5
x9
x10
x14

 =


ỹ0
ỹ4
ỹ5
ỹ9
ỹ10
ỹ14





6

Tridiagonal partition method (3/3)

3. Substituting the already found unknowns corresponding to the
⊠ coefficients, and solving the rest of the tridiagonal sub-systems
(on the device).

× ×
× × ×

× ×

x1
x2
x3

 =

ỹ1
y2
ỹ3

 × ×
× × ×

× ×

x6
x7
x8

 =

ỹ6
y7
ỹ8

 × ×
× × ×

× ×

x11
x12
x13

 =

ỹ11
y12
ỹ13





7

Computational experiment

on the basis of NVIDIA GPU RTX 2080 Ti;

SLAE sizes: 10i, 2× 10i, 4× 10i, 5× 10i, 8× 10i, i = 2, 3, . . . , 7,
and 4.5× 103, 2.5× 104, 3× 104, 6× 104, 7× 104, 7.5× 104;

Parameters: 256 CUDA threads within a block were used; number
of CUDA streams: according to [2]; precision FP64, _NO_WD
interface option; no recursions; no overwriting of RHS;

very many different sub-system sizes were tested;

event synchronization when collecting the times.

[2] Veneva M., Imamura T., ML-Based Optimum Number of CUDA Streams for the GPU Implementation of the

Tridiagonal Partition Method, arXiv:2501.05938 [cs.DC] (2025), to be published.



8

Considerations
Consideration about blockSize: there should be enough warps in a
block so as to keep the SM busy while one warp is waiting for
resources (e. g. loading data from memory). Choosing the
blockSize to be 256 gives the best performance. BlockSize smaller
than 128 is not enough to supply the SM with enough active
warps, and blockSize bigger than 256 requires too much resources
(registers and shared memory), therefore the performance starts
deteriorating.

Balance between latency hiding, resource utilization, and
occupancy.

Within the partition method, the gridSize depends on the
sub-system size m.

[3] NVIDIA, CUDA C++ Best Practices Guide, Release 12.9,

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/ (2025).

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/


9

Existing heuristics
Exhaustive search over all possible combinations of parameters
(e. g. QUDA), but this requires additional runs of the application and
is energy-costly. This approach is beneficial for applications that
are run many times with the same parameters.
Some promote a performance characteristic hoping that in the
worst case scenario this approach is not going to lead to
pathologically bad performance (e. g. occupancy in the case of
Thrust).
Some use two-step approach so as to gather information about the
GPU limitations, and the kernel that needs to be launched
(e. g. KLARAPTOR).
Some use machine learning techniques to predict the combinations
of parameters that would lead to optimal or near optimal
performance (e. g. [4]).

[4] Sato K., Takizawa H., Komatsu K., and Kobayashi H.. Automatic tuning of CUDA execution parameters for

stencil processing, In: Software Automatic Tuning, From Concepts to State-of-the-Art Results (2010).



10

Comparison between the achieved and the theoretical
occupancy

10
2

2
×

10
2

4
×

10
2

5
×

10
2

8
×

10
2

10
3

2
×

10
3

4
×

10
3

5
×

10
3

8
×

10
3

10
4

2
×

10
4

4
×

10
4

5
×

10
4

8
×

10
4

10
5

2
×

10
5

4
×

10
5

5
×

10
5

8
×

10
5

10
6

2
×

10
6

4
×

10
6

5
×

10
6

8
×

10
6

10
7

2
×

10
7

4
×

10
7

5
×

10
7

8
×

10
7

10
8

0

20

40

60

80

100

120

O
cc

up
an

cy
[%

]

Achieved occupancy for Stage 1 Achieved occupancy for Stage 3
Theoretical occupancy for Stage 1 Theoretical occupancy for Stage 3

Thus, the occupancy cannot be our main reference point.



11

SLAE size opt m #str comments corrected opt m
102 4 1 – 4

2 × 102 4 1 – 4
4 × 102 4 1 – 4
5 × 102 4 1 – 4
8 × 102 4 1 – 4

103 4 1 – 4
2 × 103 4 1 – 4
4 × 103 4 1 – 4

4.5 × 103 4 1 – 4
5 × 103 8 1 – 8
8 × 103 8 1 – 8

104 8 1 – 8
2 × 104 8 1 – 8

2.5 × 104 8 1 – 8
3 × 104 16 1 – 16
4 × 104 16 1 – 16
5 × 104 16 1 – 16
6 × 104 20 1 – 20
7 × 104 35 1 small diff with the time when m = 20: 0.0008099 20

7.5 × 104 40 1 small diff with the time when m = 20: 0.00719 20
8 × 104 32 1 – 32

105 40 1 small diff with the time when m = 32: 0.000621 32
2 × 105 64 2 small diff with the time when m = 32: 0.068788 32
4 × 105 64 4 small diff with the time when m = 32: 0.073638 32
5 × 105 40 8 small diff with the time when m = 32: 0.045666 32
8 × 105 64 8 diff with the time when m = 32: 0.182118 32

106 32 8 – 32
2 × 106 32 16 – 32
4 × 106 32 32 – 32
5 × 106 32 32 – 32
8 × 106 64 32 small diff with the time when m = 32: 0.44834 32

107 32 32 – 32
2 × 107 64 32 – 64
4 × 107 64 32 – 64
5 × 107 64 32 – 64
8 × 107 64 32 – 64

108 64 32 – 64



12

ML model for the optimum sub-system size (1/2)

k-nearest neighbors (kNN) classification (independent variable:
SLAE size; dependent (target variable): the optimum sub-system
size).

k was found empirically by using scikit-learn tool
GridSearchCV (which looks for the best combination of
hyper-parameters, in particular we looked for the best k (between
1, and the number of unique sub-system sizes), and best weight –
’uniform’ or ’distance’) to be equal to 1 (and ’uniform’ weight).

The data was split into two data sets – training (that is,
neighbours), and test (for which we make predictions) – using the
Python scikit-learn routine train_test_split with shuffle option
turned on, and splitting ratio 3 : 1.



13

ML model for the optimum sub-system size (2/2)
Two approaches when fitting the data: (1) using the experimentally
found optimum sub-system sizes, and (2) using the corrected sub-
system sizes which takes into account the trend we have noticed.

The former approach gave us 0.7 normalised accuracy score for the
test set, which means that it manages to find the expected sub-
system size in 7 out of 10 cases.

On the other hand, using the latter idea, we get 1.0 normalised
accuracy score, that is, 100% accuracy.

The null accuracy (accuracy that could be achieved by always
predicting the most frequently met sub-system size) was found to
be 0.4.

The results are in a good correspondence with the memory
alignments considerations (aligned to at least 256 bytes).



14

Results from the kNN classification model

(a) Results from the kNN
classification model for the optimum
sub-system size using the corrected

data for m.

(b) Results from the kNN
classification model for the optimum
sub-system size using the observed

data for m.

Changing from sub-optimal to optimal (bigger) sub-system size
might give us speed-up up to 1.70 (for number_of_lines = 8× 107

compare m = 64 and m = 4).



15

Results for FP32

(a) Results from the kNN
classification model for the optimum
sub-system size using the corrected

data for m.

(b) Results from the kNN
classification model for the optimum
sub-system size using the observed

data for m.

0.8 normalised accuracy score for the test set for the observed
data,
1.0 normalised accuracy score for the test set for the corrected
data,
null accuracy of 0.4.



16

SLAE size #str opt m heuristic opt m diff with opt m diff with
2080 Ti on 2080 Ti A5000 the heuristic 4080 the heuristic

102 1 4 4 4 – 4 –
2× 102 1 4 4 4 – 4 –
4× 102 1 4 4 4 – 4 –
5× 102 1 4 4 4 – 4 –
8× 102 1 4 4 4 – 8 small

103 1 4 4 4 – 4 –
2× 103 1 4 4 4 – 4 –
4× 103 1 4 4 8 small 8 small

4.5× 103 1 4 4 4 – 4 –
5× 103 1 8 8 4 small 4 small
8× 103 1 8 8 8 – 4 small

104 1 8 8 8 – 8 –
2× 104 1 8 8 8 – 16 small

2.5× 104 1 8 8 8 8 –
3× 104 1 16 16 16 – 16 –
4× 104 1 16 16 16 – 16 –
5× 104 1 16 16 16 – 16 –
6× 104 1 20 20 32 2.65% 40 small
7× 104 1 35 20 20 – 20 –

7.5× 104 1 40 20 20 – 40 small
8× 104 1 32 32 40 small 32 –

105 1 40 32 32 – 32 –
2× 105 2 64 32 64 6.26% 64 4.59%
4× 105 3 64 32 64 3.54% 64 small
5× 105 8 40 32 40 2.38% 40 4.19%
8× 105 8 64 32 64 6.03% 64 2.50%

106 8 32 32 64 9.44% 64 7.13%
2× 106 16 32 32 64 8.15% 64 6.00%
4× 106 32 32 32 64 5.60% 64 6.90%
5× 106 32 32 32 64 3.65% 64 5.66%
8× 106 32 64 32 64 5.63% 64 7.09%

107 32 32 32 64 6.06% 64 6.75%
2× 107 32 64 64 64 – 64 –
4× 107 32 64 64 64 – 64 –
5× 107 32 64 64 64 – 64 –
8× 107 32 64 64 64 – 64 –

108 32 64 64 64 – 64 –



17

Thank you for
your attention!

Acknowledgements:
R-CCS team (RIKEN),
Dr. Toshiyuki Imamura (RIKEN),
Dr. Alexander Ayryan (JINR).


