Реконструкция энергии космических лучей ультравысоких энергий, зарегистрированных флуоресцентным телескопом: одного такта времени может быть достаточно

Михаил Зотов¹ и Андрей Трусов² для коллаборации JEM-EUSO

¹ НИИЯФ МГУ, Отдел космических наук, Лаборатория КЛ ПВЭ

² Физический факультет МГУ

The 9th International Conference in Deep Learning in Computational Physics Москва, 2–5 июля 2025 г.

Космические лучи УВЭ. Флуоресцентные телескопы

Рис. слева: arXiv:1701.07277, справа: В. Николаева

Классическая процедура реконструкции энергии КЛ по данным ФТ

Astropart.Phys.30:167-174, 2008

- Распознавание трека на фокальной поверхности ФТ
- 2 Восстановление геометрии ШАЛ
- 3 Оценка энергии (Gaisser-Hillas function)

Флуоресцентный телескоп EUSO-TA

Сложности реконструкции:

- Оптическая система: линзы Френеля диаметром 1 м. Поле зрения $10.5^\circ\times10.5^\circ\Rightarrow \Phi T$ видит только часть трека ШАЛ
- Временно́е разрешение 2.5 мкс: хорошо для работы на орбите, но слишком грубое для наземного ФТ (в 25 раз больше, чем у Auger и ТА) ⇒ короткие развёртки

Подробности: Astroparticle Physics 163 (2024) 103007

События, зарегистрированные EUSO-TA

Astroparticle Physics 163 (2024) 103007

Table A.5

Parameters of the nine detected events from measurements with the external trigger from TA-BRM-FDs. In order from left to right: elevation angle of EUSO-TA during the operation; energy reconstructed by TA, zenith angle θ ; azimuth angle ϕ measured from east counterclockwise; the impact parameter R_p ; the energy rescaled based on this analysis $E_{eq,aim}$; the distance of the shower measured along the telescope optical axis.

elev. (deg)	$E_{\rm recTA}$ (eV)	θ (deg)	ϕ (deg)	R_p (km)	$E_{\rm eq,atm}$ (eV)	D (km)
25	4.90×10^{18}	56.9	15.7	8.3	2.09×10^{18}	8.66
15	1.15×10^{18}	34.5	82.8	2.5	3.27×10^{18}	2.88
25	1.58×10^{18}	62.9	27.0	0.8	6.98×10^{18}	1.04
21	1.12×10^{18}	29.5	254.9	5.0	5.61×10^{17}	5.12
20	3.24×10^{18}	60.4	169.3	9.1	1.88×10^{18}	19.80
10	2.40×10^{18}	41.2	114.8	6.7	3.51×10^{17}	10.03
15	3.31×10^{18}	40.6	210.5	9.0	2.17×10^{18}	10.07
10	5.13×10^{17}	10.6	130.5	1.7	3.10×10^{17}	2.12
15	2.63×10^{18}	8.1	8.0	2.6	2.08×10^{18}	2.76

Оценки энергии, θ , ϕ , расстояний: Telescope Array collaboration Погрешность реконструкции энергии по данным ФТ ТА: 17%.

Справа: «маска» с неработавшими пикселями EUSO-TA

Распознавание треков: свёрточный кодер-декодер

PR AUC=0.832, Balanced acc=0.858, IoU=0.789

PR AUC=0.810, Balanced acc=0.837, IoU=0.766

Комментарий: возможен перенос моделей для распознавания треков в данных ФТ PAIPS-L (16×48)

М. Зотов, А. Трусов

Проблема: сложность выбора «наилучшей» модели

Модельный набор данных: около 250 тыс. «событий» 48 × 48 × 8 с энергиями 0.63–6.6 ЭэВ (равномерно по lg(E/eV)). Фиксированная тестовая выборка (1 тыс.), случайная обучающая выборка (76 тыс.)

Model	MAPE, %	R^2	$\mu\pm\sigma$, %
Слева:	18.2	0.760	$3.0{\pm}24.2$
Справа:	18.1	0.759	$2.9{\pm}24.4$

Не всегда наблюдается корреляция между метриками и точностью реконструкции!

	Реконструкция энергии КЛ УВЭ	DLCP2025 7	1/
--	------------------------------	------------	----

2015-05-13: Е(ТА) = 1.15±0.20 ЭэВ (*R*_p =2.5 км)

Слева: НС обучаются реконструировать только E, справа: E и расстояние до оси ШАЛ

М. Зотов, А. Трусов

2015-10-15: Е(ТА) = 3.31±0.56 ЭэВ (*R_p* =9.0 км)

По-видимому, трек распознан лишь частично \Rightarrow сильно заниженные оценки энергии \lesssim 2 ЭэВ. Лучшая оценка: 2.94 \pm 0.81 ЭэВ (при обучении НС реконструкции энергии без маски)

Яркий трек от ШАЛ на небольшом расстоянии от ФТ, $\theta = 8.1^{\circ}$, $\phi = 8.0^{\circ}$. В первоначальном наборе данных аналогичных событий не было \Rightarrow завышенные оценки энергии ~4 ЭэВ.

Смоделировали ${\sim}3.5$ тыс почти вертикальных событий на расстояниях ${\leq}3$ км, уменьшили обучающий набор до 100 тыс, повторили обучение.

2015-11-07: Е(ТА) = 2.63±0.45 ЭэВ (*R*_p =2.6 км)

Слева: обучение моделей и реконструкция энергии так же, как рассказано ранее (по размеченным/распознанным трекам)*

Справа: обучение и реконструкция энергии без какой-либо информации о треках (ни в обучающем наборе, ни в данном событии)

*The Tukey fence: сохраняем результаты внутри интервала значений [$Q_1 - k(Q_3 - Q_1)$; $Q_1 + k(Q_3 - Q_1)$], k = 1.5

Сравнение реконструкции энергии с распознаванием треков и без

Слева: обучение 100 моделей для реконструкция энергии по размеченным/распознанным трекам: MAPE=17.6±0.5%

Справа: обучение 100 моделей для реконструкция энергии без какой-либо информации о треках: MAPE=18.4 $\pm 0.5\%$

- Реализована процедура распознавания треков ШАЛ от КЛ ультравысоких энергий, зарегистрированных флуоресцентными телескопами (EUSO-SPB2, EUSO-TA, PAIPS,...), и последующей оценки энергии первичных частиц с помощью нейронных сетей
- С помощью этой процедуры удалось получить разумные оценки энергии нескольких событий, зарегистрированных малым наземным ФТ EUSO-SPB2 за единственный такт времени
- По-видимому, при использовании нейронных сетей этап распознавания трека не является обязательным для получения оценки энергии КЛ, но не все моменты работы НС до конца понятны
- В планах: проверка/адаптация моделей на сигналах калибровочного лазера эксперимента Telescope Array

[†]Поиск треков ШАЛ в данных телескопа PAIPS-L осуществляется при поддержке гранта РНФ 22-62-00010. Анализ данных телескопа EUSO-TA на основе HC выполняется в рамках государственного задания МГУ им. М.В. Ломоносова.

- Реализована процедура распознавания треков ШАЛ от КЛ ультравысоких энергий, зарегистрированных флуоресцентными телескопами (EUSO-SPB2, EUSO-TA, PAIPS,...), и последующей оценки энергии первичных частиц с помощью нейронных сетей
- С помощью этой процедуры удалось получить разумные оценки энергии нескольких событий, зарегистрированных малым наземным ФТ EUSO-SPB2 за единственный такт времени
- По-видимому, при использовании нейронных сетей этап распознавания трека не является обязательным для получения оценки энергии КЛ, но не все моменты работы НС до конца понятны
- В планах: проверка/адаптация моделей на сигналах калибровочного лазера эксперимента Telescope Array

Благодарю за внимание!

[†]Поиск треков ШАЛ в данных телескопа PAIPS-L осуществляется при поддержке гранта РНФ 22-62-00010. Анализ данных телескопа EUSO-TA на основе HC выполняется в рамках государственного задания МГУ им. М.В. Ломоносова.