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ABSTRACT

In this paper we have introduced a novel method for gamma hadron separation in Imaging Atmo-
spheric Cherenkov Telescopes(IACT) using Quantum Machine Learning. IACTs captures images of
Extensive Air Showers (EAS) produced from very high energy gamma rays. We have used the QML
Algorthims, Quantum Support Vector Classifier (QSVC) and Variational Quantum Classifier(VQC)
for binary classification of the events into signals(Gamma) and background(hadron) using the image
parameters. MAGIC Gamma Telescope dataset is used for this study which was generated from
Monte Carlo Software Coriska. These quantum algorithms achieves performance comparable to
standard multivariate classification techniques and can be used to solve variety of real world problems.
The classification accuracy is improved by hyper parameter tuning. We propose a new architecture for
using QSVC efficiently on large datasets and found that clustering enhance the overall performance.

1 Introduction

Imaging Atmospheric Cherenkov Technique (IACT) is a ground based gamma ray observation technique, used in γ ray
astrophysics to detect very high energy γ ray photons[1]. The Earth’s atmosphere serves as a giant local calorimeter
for gamma ray detection. When a very high energy gamma ray enters the atmosphere, it interacts with atmospheric
nuclei and an e+e−pair is produced. The produced e+ and e− from the pair will make collisions with atmospheric
nuclei and are subjected to energy loss via multiple Coulomb scattering. In these collisions the charged particles will
be accelerated and emit electromagnetic radiation (bremsstrahlung). This process continues till the threshold for the
physical processes is involved is reached and an electromagnetic cascade is produced, also known as air shower[1].
The charged particles in this air shower are travelling faster than the phase velocity of light in the atmosphere and
will emit Cherenkov radiations at Cherenkov angle, which is inversely proportional to the velocity of the particle and
the refractive index[2]. A very narrow cone (1.0° at 8 km above sea level) of Cherenkov radiation generated by the
ultrarelativistic charged particle in the cascade penetrates to the ground level[3]. The produced Cherenkov light is
spread over a larger area of several hundred square meter around the shower axis and can be detected using ground
based telescopes working on the principle of IACT. An arrangement of large focusing mirrors reflects the Cherenkov
light onto an array of photo-multiplier tubes which captures high speed images of these very short Cherenkov radiation
flashes (5-20 ns)[4]. The direction and energy of the primary gamma rays can be reconstructed from the shower image
using different techniques.

An overwhelming background of hadronic cascade is initiated by the cosmic rays entering into Earth’s atmosphere. To
study high energy gamma rays of astrophysical origin, the intense isotropic background of hadronic cascade from cosmic
rays must be rejected with high efficiency without losing much of the primary gamma ray signal. Traditionally, a direct
selection method is used for the γ-hadron separation in Cherenkov telescope data analysis, in which direct cuts are made
on the image parameters[5]. The γ-hadron separation is a multivariate binary classification of the events into two classes
: signal (gamma) and background (hadrons) using different shape features of the shower image. A huge class imbalance
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is present in the Cherenkov telescope data due to the dominant hadronic background. The number of gamma ray signals
are very small compared to hadronic events, not only that the exact signal to background ratio is also unknown and may
vary for different sources[6]. A mix of Monte Carlo generated gamma ray events and real hadronic background can be
used for training purpose in the classical machine learning algorithms[6]. Several classical machine learning algorithms,
Random forest[7], and deep learning methods, Convolutional Neural Networks(CNNs)[1, 8], are found very effective
in extracting the gamma rays signal from a dominant hadronic background. Due to the ever changing nature of the
Earth’s atmosphere, which acts as a calorimeter for incoming rays, the air showers produced by both primary gamma
rays and cosmic rays are subjected to fluctuations[9]. Hadronic showers show greater shower-to-shower fluctuations in
its longitudinal profile. In addition, light from local particles at the tail of shower will cause intensity fluctuations close
to the shower axis. Therefore, there is finite chance of misclassification of events.

In 1982 Richard Feynman come up with the idea that nature is not classical and hence it is better to use quantum
computers to make a simulation of nature[10]. The field of Quantum Computing is advancing at high pace and new
computational techniques are being developed and tested to solve problems in various areas of physics. In this letter, we
are exploring use of one such technique, Quantum Machine Learning (QML), to study the gamma-hadron separation in
the IACT Telescopes. The result obtained are based on the Variational Quantum Classifier [11] and Quantum Support
Vector Machine (QSVM)[12].

2 Gamma hadron separation

The gamma rays with energies ranging from 100GeV to 10TeV can be separated efficiently from a hugely dominant
hadronic background using several image parameters based on the shape and orientation of the shower images. At very
high energies the hadronic shower gets narrower and less different from gamma ray induced showers,except that an
increased muon background will be produced. But these muons don’t have much role in γ−hadron separation.

2.1 Lateral and longitudinal developments of air showers

Lateral distribution of light in gamma ray showers is be governed by the cherenkov angle and multiple Coulomb
scattering.Half of the total cherenkov light of gamma cascade is emitted from the shower core which results in a peak
in the lateral distribution which is absent in case of hadronic shower[13]. This difference in the lateral distribution of
cherenkov light at the ground level is crucial in γ-hadrons separation. Moreover the hadronic shower images are much
wider whereas the gamma events has a more regular shape. If we analyse the longitudinal and lateral development of
showers, hadron showers having higher transverse momentum flow to the pions has greater transverse development
throughout the shower compared to that of a gamma shower[14]. Energetic muons produced from the decay of charged
pions will reach the ground over a wide region and produces local cherenkov peaks. The hadron showers with cherenkov
producing components much closer to the ground, shows more fluctuations in the cherenkov emission and longitudinal
development compared to gamma showers. The gamma ray showers being more of an electromagnetic cascade has
greater longitudinal development[5].

2.2 Image parametrization

The hadronic shower images are observed to be more longer and broader compared to gamma ray shower images.
Effective discrimination of primary gamma ray shower and hadronic background shower is possible on the basis of the
width,length and orientation of these images. The showers with axis parallel to the optic axis and landing directly on
the detector will produce circular images. But if it lands at some distance(impact parameter) away from the detector it
will be a bivariate Gaussian distribution which is an elliptical cluster. For gamma ray showers the major axis is oriented
towards the camera center whereas the hadronic showers have random axial orientation.

The pixel image of the shower after some pre processing and image cleaning is then converted to into few image
parameters, defined by moment analysis on the pixel signal amplitudes. The moments are defined as:

〈x〉 =
Σnixi
Σni

〈y〉 =
Σniyi
Σni

〈xy〉 =
Σnixiyi

Σni

〈x2〉 =
Σnix

2
i

Σni
〈y2〉 =

Σniy
2
i

Σni

(1)

where, x and y are the coordinates of pixels and n is the number of digital counts in a pixel. The summation runs over
all the pixels in the image.
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Figure 1: Definitions of some hillas parameters in the camera plane.

Image spreads are derived from the moments in (1):

σ2
x = 〈x2〉 − 〈x〉2 σxy = 〈xy〉 − 〈x〉〈y〉
σ2
y = 〈y2〉 − 〈y〉2 (2)

Image parameters can be derived from the moments and the image spreads in (2):

length =

√√√√σ2
x + σ2

y +
√

(σ2
x − σ2

y)2 + 4(σxy)2

2

width =

√√√√σ2
x + σ2

y −
√

(σ2
x − σ2

y)2 + 4(σxy)2

2

distance =
√
〈x〉2 + 〈y〉2

α = sin−1

(
miss

distance

)
(3)

where, miss is the perpendicular distance between camera center and the major axis as shown in Fig. 1.

3 Methodology

3.1 Dataset

We are using the MAGIC Gamma Telescope Data Set in the UC Irvine Machine Learning Repository[15] which was
created for the work in Ref [9]. These events were generated by a Monte Carlo program, Coriska with energies below
50GeV [16]. The data set consist of two classes: gamma (signal) and hadron (background) with 12,332 gamma and
6688 hadron events. 10 chosen image parameters are used as features for classification.

3.2 Quantum Classification Algorithms

Quantum machine learning (QML) offers yet another potential direction to study data, find patterns and build classi-
fication models in a way that is very different from traditional classical machine leaning. QML offers new types of
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Table 1: Image parameters
Classifiers Description

Length rms spread along the major axis of ellipse, a measure of longitudinal development of the shower .
Width rms spread of light along the minor axis of ellipse.It is a measure of lateral development of the shower.
Size 10-log of total integrated light content in the image.
Conc 2 Ratio of sum of two brightest pixels over Size, a degree of light concentration.
Conc Ratio of brightest pixel over Size.
Asym Distance from the brightest pixel to center, projected onto major axis of the ellipse, a measure of asymmetry.
M3Long Cube root of third moment along major axis of ellipse.
M3Trans Cube root of third moment along minor axis of ellipse.
Alpha (α) Angle between the image axis and the line joining the camera center and centroid of the ellipse.
Distance Distance from the camera center to the centroid of the ellipse.

Table 2: Accuracy score for various models for the entire dataset
Model Accuracy
QSVC 62
XGBClassifier 88
LGBMClassifier 88
RandomForestClassifier 88
ExtraTreesClassifier 88
BaggingClassifier 86
SVC 87
AdaBoostClassifier 84
DecisionTreeClassifier 81
KNeighborsClassifier 83
LabelSpreading 83
LabelPropagation 82
NuSVC 83
ExtraTreeClassifier 78
SGDClassifier 79
LogisticRegression 79
CalibratedClassifierCV 79
LinearSVC 79
LinearDiscriminantAnalysis 78
RidgeClassifier 78
RidgeClassifierCV 78
NearestCentroid 76
QuadraticDiscriminantAnalysis 78
BernoulliNB 76
Perceptron 76
PassiveAggressiveClassifier 70
GaussianNB 73
DummyClassifier 54

models that leverage quantum computers unique capabilities, for example, an exponentially higher-dimensional feature
spaces to improve the accuracy of models. In this project we explore the data and the classification problem with once
such QML algorithms called the Variational Quantum Classifier (VQC) using the IBM’s recently launched tech stack
Qiskit Machine Learning.VQC algorithm is a suitable candidate for any classification problem within QML in Noisy
Intermediate-Scale Quantum(NISQ) era, although fault-tolerant quantum computers will likely not be available for few
years. In the VQC, classical data is first mapped into a higher-dimensional feature space where the problem at hand
becomes easier to solve. Then the VQC uses the traditional variational method to solve any problems on a quantum
processor or simulator using classical optimizers to train a parameterized quantum circuit and provides a solution that
cleanly separates the data. Hence, a VQC is also called a parameterized quantum circuit. The three major important
components of VQC are the:
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• Feature Map: Quantum algorithms require quantum data inputs for model training. Hence, a quantum
embedding representing classical data as a Quantum state in Hilbert feature space with the help of gate
parameters is used in the first layer and is called more generally a Feature Map.

• Variational Circuit: The next layer of circuit is constructed using ansatz and gates which gives us variational
parameters(Θ) perform the learning and tuning the model.

• Optimizer: Optimizers are algorithms or methods used to change the attributes of variational circuits
parameters(Θ) and iterations to reduce the losses.

Figure 2: Pictorial components of the VQC classifier[17]

Second approach of QML is the Quantum Support Vector Classifier(QSVC) which consists of a quantum kernel for
estimating the kernel function on a quantum computer and optimizes a classical SVM directly.The algorithm classifies a
signal as gamma or hadron,by taking advantage of the high dimensionality of the quantum Hilbert space.The Quantum
kernel plays a key role in separating the data with a hyperplane. The kernel K(~xi, ~xj) is estimated on a quantum
computer for all pairs of training samples ~xi, ~xj in the training dataset. After choosing the feature map, we apply this
QSVC for the mapped data to create a hyperplane for separating gamma and hadrons.For getting quantum advantage
the featuremap must be based on circuits which are hard to simulate using classical computers[11].

Table 3: Accuracy and Total time taken by QSVC using 1000 events for different feature maps.
Train accuracy Test accuracy Time Taken

ZFeatureMap 100 57 0:10:40
PauliFeatureMap 100 66 1:22:19
ZZFeatureMap 100 63.5 1:27:20

Table 4: Accuracy and Total time taken by VQC using 1000 events for different feature maps.
Train accuracy Test accuracy Time Taken

ZFeatureMap 63.5 62.5 3:45:13
PauliFeatureMap 61.125 56 4:20
ZZFeatureMap 55.5 51.5 4:50:45
RawFeatureVector 57.125 62 2:02:46

4 Hyper Parameter Tuning

We consider only 1000 events for Hyper Parameter tuning.The optimizer used here is COBYLA (Constrained optimiza-
tion by linear approximation) and is executed on statevector simulator.COBYLA is much faster and will give better
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Table 5: Accuracy and Total time taken by VQC using 1000 events for different variational circuits(ansatz).
Train Accuracy Test Accuracy Time Taken

RealAmplitudes 55.875 56.5 2:00:00
EfficientSU2 62.875 56.5 2:45:23
PauliTwoDesign 60.75 56 1:45:24
NLocal 52.375 51.5 0:15:13
TwoLocal 63.5 62.5 0:15:13

Table 6: Hyper parameter search on QSVC with 1000 events
kernel Test score

0 (0.5, [Y], 1) 60.1786
1 (0.5, [Z], 1) 60.1786
2 (0.5, [YZ], 1) 61.0714
3 (0.5, [ZZ], 1) 61.0714
4 (1, [Y], 1) 60.3571
5 (1, [Z], 1) 60.3571
6 (1, [YZ], 1) 61.0714
7 (1, [ZZ], 1) 61.0714
8 (2, [Y], 1) 60.3571
9 (2, [Z], 1) 60.3571
10 (2, [YZ], 1) 61.0714
11 (2, [ZZ], 1) 61.0714
12 (0.5, [Y], 1) 55.8929
13 (0.5, [Z], 1) 55.8929
14 (0.5, [YZ], 1) 61.0714
15 (0.5, [ZZ], 1) 61.0714
16 (1, [Y], 1) 60.1786
17 (1, [Z], 1) 60.1786
18 (1, [YZ], 1) 61.2500
19 (1, [ZZ], 1) 61.0714
20 (2, [Y], 1) 60.1786
21 (2, [Z], 1) 60.1786
22 (2, [YZ], 1) 60.8929
23 (2, [ZZ], 1) 61.0714

performance than SPSA(Simultaneous perturbation stochastic approximation) optimizer. The number of optimization
iterations is fixed as 100. If we further increase the number of optimization iterations the time taken will increase and
there is no significant improvement in the accuracy.

Large number of features requires high computational resources and may even lead to overfitting.Feature map is used
for reducing the dimensionality of the data. For QSVC algorithm PauliFeatureMap has the highest testing accuracy and
ZFeatureMap has the shortest time taken. The training accuracy is 1 for all Feature maps. We have chosen Pauli Feature
map for QSVC Algorithm. The Hyper-parameter search algorithm will automatically optimize the hyper-parameters of
the quantum machine learning model. Hyper-parameters are the parameters which are not updated during the learning
and are used to configure the algorithm. Hyper parameter search using 1000 events and Pauli Feature Maps with
Y,Z,YZ,ZZ configurations will give rise to 24 possible fittings. The best kernel is (1,[’YZ’],1) with a test score of
0.61.Entangler map assosciated with a featuremap is used to specify the entanglement of qubits.Here we used linear
entanglement so that each qubit j is entangled with the qubit j + 1.The number of repitions of the featuremap is 3.

Whereas for VQC Algorithm RawFeatureVector and ZFeatureMap performs.We found that TwoLocal circuit has the
highest accuracy and the time taken is lesser compared to others.Hence for tuning the feature map we are choosing Two
Local as the variational circuit for VQC.

6
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Figure 3: Accuracy score of various feature maps for VQC with 1000 events on IBM Statevector Simulator and using
COBYLA optimizer with 100 iterations.

Table 7: Hyperparameter Search on QSVC for different sets of events
Events Test accuracy Train accuracy
100 60.00 100
200 60 96.43
300 60 100
500 58 91.43
700 69.29 100
900 69.29 100
1000 63.50 100

5 Quality Parameters

The gamma acceptance efficiency εγ =
Nγ
S and the hadron acceptance efficiency is given by εh = Nh

B , where S and B
are the total number of gamma (signals) and hadron(background) events respectively. Nγ and Nh are the number of
gamma and hadronic events which will survive the discrimination process. The Quality factor is defined as

Q =
εγ√
εh

(4)

and the statistical significance is given by,

σ = Nγ/
√

2Nh +Nγ (5)

We are interested only in the value of Q obtained at εγ = 0.5.

Receiver Operating Characteristics(ROC) is the plot of signal efficiency (εγ ) vs. background rejection(εh). The
Area under the Receiver Operating Characteristics (AUC) is used as a metric to compare the performance of different
classifiers. liacc can be calculated by interpolating the ROC curve and taking the mean of εγ at the points where εh=
0.01,0.02 and 0.05. hiacc is the mean of εγ at the points εh = 0.1 and εh = 0.2 [9].
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Table 8: Accuracy and Area under the ROC curves(AUC) for VQC on 5k events
Test accuracy Train accuracy

VQC (statevector simulator) 64.9 63.1
VQC (qasm simulator) 62.2 60
QSVC(statevector simulator) 64.1 100
XG Boost 88.4 97.9

Table 9: Comparison of Accuracy obtained from QSVC, Classical SVC and XGBoost
Events QSVC SVC XGBoost
100 60 75 70
200 67.5 80 75
300 63.3 83.3 78.33
500 62 87 74
700 65.7 83.57 77.14
900 68.3 88.3 77.22
1000 65.5 86 77.5

6 Clustering Architecture for VQC

Figure 4: Clustering Architecture for QSVC and SVC

Quantum Classifier Algorithms can be very slow for certain large datasets. Using the architecture shown in Fig. 4. it
is possible to use Quantum Classifier algorithms on large datasets efficiently. Here the dataset is split into training
and testing datasets with 8:2 ratio. Training dataset is clustered to an optimal number of small clusters. We have used
k-means clustering, however one can also go for Quantum Clustering. We found that clustering prior to classification
is useful to enhance the overall performance. The dimensionality of the data is reduced using PCA before clustering.
Each cluster dataset is then independently classified by the QSVC/SVC model.An ensemble classifier is implemented
using the voting classifier in scikit learn. The ensemble classifier will combine all the models and final predictions is
made on the testing data.

8
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Table 10: Accuracy and AUC of QSVC and XGBoost Algorithm for 10k events in statevector simulator
AUC Test accuracy Train accuracy

QSVC (statevector simulator) 51.65 62.75 100
XG Boost 94.02 88.55 95.58

Table 11: Test Accuracy for QSVC and Classical SVC after clustering
Cluster Size QSVC Classical SVC
Cluster 1 500 71 78.25
Cluster 2 500 77 82.75
Cluster 3 500 70 82.00

Figure 5: k-means clustering(3 clusters)

Figure 6: k-means clustering(4 clusters)

7 Conclusion and future scope

In this study, we have successfully employed Quantum Machine Learning Algorithms for gamma hadron separation in
Imaging Atmospheric Cherenkov Telescopes on gate-model quantum computer simulators. We have used 10 qubits
and up to 19k events in IBM Quantum Framework. We have successfully run VQC for 5k events on both statevector
simulator and qasm simulator. The VQC algorithm is very slow compared to QSVC. QSVC algorithm achieves a
classification performance similar to the performances of the classical machine learning methods. For entire dataset
QSVC algorithm has achieved a testing accuracy score of 62.02. We have chosen the best possible combinations
of feature maps, ansatz/kernels and optimizers using Hyper parameter tuning on 1000events. QSVC Algorithm is

9
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Table 12: Test Accuracy of QSVC and Classical SVC after clustering
Cluster Size QSVC Classical SVC
Cluster 1 500 64 84.00
Cluster 2 500 70 77.5
Cluster 3 500 96 95
Cluster 4 500 69 80.50

Table 13: Test Accuracy of Ensemble Classifier
Number of clusters QSVC Classical SVC
3 65.1 80.4
4 65.5 81.1

run on 10k events on statevector simulator and the Quality parameters obtained were compared to that of XGBoost
Algorithm. However classical simulators cannot efficiently simulate QSVC algorithm as it is hard to estimate the kernels
in quantum feature space using classical computers.Using the proposed Clustering architecture Quantum Classifiers can
be implemented efficiently on larger datasets.
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